
Interfacing Tcl with the World
(When Scripting is not Enough)

Dipl.-Ing. Martin Weitzel
Technische Beratung für EDV

64380 Roßdorf, Germany
www.tbfe.de

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

2

Prelude

 It all began in the late 90s ...

 ...when I decided to declare my home
an “MSfZ” (Microsoft free Zone)

 There has been too much of frustration
with Windows 3.x while Linux was on
the verge to become a replacement

 But often this excluded me from utility
or convenience software supplied with
electronic equipment

 One such example is a multimeter I
bought around the year 2000

continued ...

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

3

A True Story

 So what were my options?

 Not using the nifty RS232 interface?

 But this was part of the reason to buy that
particular MM in the first place!

 Retracting from my brave proclamation by
using the MS-Windows software supplied
with the MM?

 Or try a Linux software for the MM myself?
 Luckily it turned out some brave soul already

had tackled the hard part, i.e. analysed the
wire protocol and published it on the internet

...continued

The wire protocol is both,
“stupid simple” but rational to
keep that little device “as
dumb as possible”:
● Repeatedly transmitted

are 14 bytes,
● each of which carries a

sequence counter cycling
from 1 through 14 in its
high nibble …

● … while its low nibble
codes the display state
(i.e. whether some LCD
digit segment or unit
indicator is visible or not).

To be honest: to find out the
latter might have taken me
long, since I “naturally”
expected a measuring value
to be transmitted in ASCII
(digits), or maybe BCD, or
whatever ... but I'd never
expected coded LCD digit
segments!

continued ...

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

4

A Multimeter
Remote Display

 And here's the result of

 a morning of Tcl programming fun and ...

 ... an afternoon of cleaning up the result

 (with no time left to add comments ☺)

...continued
#!/usr/bin/wish

array set mapping {
 1 { RS232 Auto DC AC }
 2 { a1 a6 a5 S }
 3 { a2 a7 a3 a4 }
 4 { b1 b6 b5 p1 }
 5 { b2 b7 b3 b4 }
 6 { c1 c6 c5 p2 }
 7 { c2 c7 c3 c4 }
 8 { d1 d6 d5 p3 }
 9 { d2 d7 d3 d4 }
 10 { Dio K n µ }
 11 { Ton M % m }
 12 { Hold Ohm Duty F }
 13 { Batt Hz V A }
 14 { {} HFE °C {} }
}

set info {Batt RS232 Auto DC AC Dio Ton Hold HFE}
set unit {Ohm Duty F Hz V A °C}
set umod {K n µ M % m}

frame .sign -height 5 -width 20

proc makeDigit {f {p 0}} {
 set length 40
 set thickness 4
 set dotsize 6
 frame $f
 frame $f.1 -height $thickness -width $length -bg grey
 frame $f.2 -height $length -width $thickness -bg grey
 frame $f.3 -height $length -width $thickness -bg grey
 frame $f.4 -height $thickness -width $length -bg grey
 frame $f.5 -height $length -width $thickness -bg grey
 frame $f.6 -height $length -width $thickness -bg grey
 frame $f.7 -height $thickness -width $length -bg grey
 grid $f.1 -column 1 -row 0
 grid $f.2 -column 2 -row 1
 grid $f.3 -column 2 -row 3
 grid $f.4 -column 1 -row 4
 grid $f.5 -column 0 -row 3
 grid $f.6 -column 0 -row 1
 grid $f.7 -column 1 -row 2
 if {$p} {
 frame .p$p -height $dotsize -width $dotsize -bg grey
 grid .p$p -in $f -padx {8 0} -row 3 -column 3 -sticky s
 }
}

frame .info
set n -1
foreach s $info {
 label .info.[incr n] -text $s -fg grey
 pack .info.$n -side left -padx 3
}

makeDigit .a 1
makeDigit .b 2
makeDigit .c 3
makeDigit .d

label .umod -font {Sans 25}
label .unit -font {Sans 25}

grid .info - - - - .umod .unit
grid .sign .a .b .c .d ^ ^ -padx 3

set fd [open /dev/ttyS0]
fconfigure $fd\
 -mode 2400,n,8,1\
 -translation binary
fileevent $fd readable "display $fd"

proc display {fd} {
 global mapping info unit umod
 if {[eof $fd]} {
 close $fd
 return
 }
 set x [read $fd 1]
 scan $x %c x
 set n [expr ($x >> 4) & 0xF]
 if {![info exists mapping($n)]} return
 foreach w $mapping($n) {
 if {[regexp {^([abcd])([1-7])$} $w - b z]} {
 .$b.$z configure -bg grey
 }
 if {[regexp {^p([1-3])$} $w - z]} {
 .p$z configure -bg grey
 }
 if {[set p [lsearch $info $w]] >= 0} {
 .info.$p configure -fg grey
 }
 if {[string equal $w [.umod cget -text]]} {
 .umod configure -text ""
 }
 if {[string equal $w S]} {
 .sign configure -bg grey
 }
 }
 for {set i 0} {$i < 4} {incr i} {
 if {[expr ($x & (1<<$i))]} {
 set w [lindex $mapping($n) $i]
 if {[regexp {^([abcd])([1-7])$} $w - b z]} {
 .$b.$z configure -bg black
 }
 if {[regexp {^p([1-3])$} $w - z]} {
 .p$z configure -bg black
 }
 if {[set p [lsearch $info $w]] >= 0} {
 .info.$p configure -fg black
 }
 if {[string equal $w S]} {
 .sign configure -bg black
 }
 if {[lsearch $umod $w] != -1} {
 .umod configure -text $w
 }
 if {[lsearch $unit $w] != -1} {
 .unit configure -text $w
 }
 }
 }
 update idletasks
}

#!/usr/bin/wish

array set mapping {
 1 { RS232 Auto DC AC }
 2 { a1 a6 a5 S }
 3 { a2 a7 a3 a4 }
 4 { b1 b6 b5 p1 }
 5 { b2 b7 b3 b4 }
 6 { c1 c6 c5 p2 }
 7 { c2 c7 c3 c4 }
 8 { d1 d6 d5 p3 }
 9 { d2 d7 d3 d4 }
 10 { Dio K n µ }
 11 { Ton M % m }
 12 { Hold Ohm Duty F }
 13 { Batt Hz V A }
 14 { {} HFE °C {} }
}

set info {Batt RS232 Auto DC AC Dio Ton Hold HFE}
set unit {Ohm Duty F Hz V A °C}
set umod {K n µ M % m}

frame .sign -height 5 -width 20

proc makeDigit {f {p 0}} {
 set length 40
 set thickness 4
 set dotsize 6
 frame $f
 frame $f.1 -height $thickness -width $length -bg grey
 frame $f.2 -height $length -width $thickness -bg grey
 frame $f.3 -height $length -width $thickness -bg grey
 frame $f.4 -height $thickness -width $length -bg grey
 frame $f.5 -height $length -width $thickness -bg grey
 frame $f.6 -height $length -width $thickness -bg grey
 frame $f.7 -height $thickness -width $length -bg grey
 grid $f.1 -column 1 -row 0
 grid $f.2 -column 2 -row 1
 grid $f.3 -column 2 -row 3
 grid $f.4 -column 1 -row 4
 grid $f.5 -column 0 -row 3
 grid $f.6 -column 0 -row 1
 grid $f.7 -column 1 -row 2
 if {$p} {
 frame .p$p -height $dotsize -width $dotsize -bg grey
 grid .p$p -in $f -padx {8 0} -row 3 -column 3 -sticky s
 }
}

frame .info
set n -1
foreach s $info {
 label .info.[incr n] -text $s -fg grey
 pack .info.$n -side left -padx 3
}

makeDigit .a 1
makeDigit .b 2
makeDigit .c 3
makeDigit .d

label .umod -font {Sans 25}
label .unit -font {Sans 25}

grid .info - - - - .umod .unit
grid .sign .a .b .c .d ^ ^ -padx 3

set fd [open /dev/ttyS0]
fconfigure $fd\
 -mode 2400,n,8,1\
 -translation binary
fileevent $fd readable "display $fd"

proc display {fd} {
 global mapping info unit umod
 if {[eof $fd]} {
 close $fd
 return
 }
 set x [read $fd 1]
 scan $x %c x
 set n [expr ($x >> 4) & 0xF]
 if {![info exists mapping($n)]} return
 foreach w $mapping($n) {
 if {[regexp {^([abcd])([1-7])$} $w - b z]} {
 .$b.$z configure -bg grey
 }
 if {[regexp {^p([1-3])$} $w - z]} {
 .p$z configure -bg grey
 }
 if {[set p [lsearch $info $w]] >= 0} {
 .info.$p configure -fg grey
 }
 if {[string equal $w [.umod cget -text]]} {
 .umod configure -text ""
 }
 if {[string equal $w S]} {
 .sign configure -bg grey
 }
 }
 for {set i 0} {$i < 4} {incr i} {
 if {[expr ($x & (1<<$i))]} {
 set w [lindex $mapping($n) $i]
 if {[regexp {̂ ([abcd])([1-7])$} $w - b z]} {
 .$b.$z configure -bg black
 }
 if {[regexp {̂ p([1-3])$} $w - z]} {
 .p$z configure -bg black
 }
 if {[set p [lsearch $info $w]] >= 0} {
 .info.$p configure -fg black
 }
 if {[string equal $w S]} {
 .sign configure -bg black
 }
 if {[lsearch $umod $w] != -1} {
 .umod configure -text $w
 }
 if {[lsearch $unit $w] != -1} {
 .unit configure -text $w
 }
 }
 }
 update idletasks
}

Since you are not expected to
read a 2.8 pt size font (but of
course may give it a try ☺),
here's the word-count output:

$ wc <dt9062.tcl
 126 561 4273

(i.e. one page of DIN A4,
printing on front-side and back)

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

5

Typical Hardware Interfaces

 Prevalent interfaces are

 Ethernet (most often used for classic TCP/IP, with maybe
IPv6 on the rise, but actually open to many protocols)

 USB (typically for a a serial data stream or presenting itself
as a file storage volume)

 RS232 (yes, it seems “the condemned live longer”)
 Still in use sometimes

 SPP (Standard Parallel Port, now standardises by
IEEE 1284, formerly “Centronics Interface”)

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

6

Hardware Interfaces
of Embedded Devices

 Generally “I/O-Ports”

 Used as “single bits” or in bit-groups of any size

 Sometimes dedicated, sometimes combined and
programmable

 Different electrical characteristics

 Switching to supply voltage or ground ...

 … maybe with a pull-up or pull-down resistor and sometimes
even more special protection circuitry (e.g. for de-bouncing)

 A/D converters to take sensor measurements

 D/A converters for controlling various kinds of actors

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

7

“Software to Hardware”
Interfaces

 Its good practice today to shield most idiosyncrasies of
peripheral devices at the driver level

 Therefore at the application level there are much fewer
abstractions to deal with

 TCP/IP is most commonly used via the socket abstraction
 In analogy to a plug and a (wall-mount) socket a

connection may be available or in use
 In the second case it presents itself as serial data stream

 RS232 and SPP are typically “just serial data” streams too

 USB may be a serial stream too or present a file system

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

8

“Software to Software”
Interfaces

 Complex software systems are often structured into
components that need to communicate with each other

 There are various ways to handle this

 Classic IPC: Usually limited to a single node ans OS
dependant in its details

 TCP/IP: Local use is not uncommon as scaling is easy then
by accumulating or distributing components over nodes

 Pipelines: originally a prominent Unix feature – of course
readily assumed by Linux – and of tremendous utility

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

9

Communication from
Tcl's Point of View

 Given proper driver support, “wiring” a Tcl application with
divergent hardware components requires just to handle

 Files and/or

 Sockets
 In a design with separate software components, the handling

child processes from Tcl may be an issue too

 Finally, by adding C/C++ modules to Tcl – a “dead easy job”
when SWIG is used for the glue code – any requirement some
whimsical piece of hard-/software might impose is satisfiable

 If it can be done in C/C++, it can be done from Tcl too!

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

10

Accessing File Systems

 A modern and very successful approach is to decorate a piece
of hardware as if it were a part of the file system

 The classic Unix device file system might have started it ...

 … but surely Plan 9 from Bell Labs (a Unix successor)
brought it to a first blow ...

 … and so today it's an essential part of Linux too
 For a Tcl application the following commands are relevant:

 file with many sub-commands for queries and operations
on files systems and chosen files in entirety

 glob to get an – optionally filtered – list or directory entries

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

11

Mounting File Systems

/

mount
point

Unix/Linux
Root File System

/

not “mounted”

“mounted”

● HD (Partition)
● SD-Card
● USB special

purpose device

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

12

Streamed Data

 Data streams in Tcl follow the classic file abstraction:

 First use the Tcl command open to get an (opaque) handle

 Then use this handle to
 read data with

 gets (full lines) or
 read (portions of any chosen size)

 write data with
 puts (typically but not necessarily full lines)

 and finally release used resources with close

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

13

Stored Data

 In addition to streamed data there is the option

 (via the file handle)
 to query the current position with the command tell
 continue at a chosen position with the command seek

 Obviously this is close to the C/Posix model of file access

 If positions are determined by calculations, some care must be
taken if translations are in effect

 e.g. CR-NL → NL (or vice versa)

 Opening “seekable” files in binary mode is to recommend

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

14

 Controlling status LEDs via text output

 Assignment: A..D from top down

 Codes: 0 = off, 1 = on (steady), 2 = flash

Fabricated Device
Driver Example

echo –n A0B1C2D1 >/dev/keyledsecho –n A0B1C2D1 >/dev/keyleds

set fd [open /dev/keyleds w]
puts $fd -nonewline A0B1C2D1
close $fd

set fd [open /dev/keyleds w]
puts $fd -nonewline A0B1C2D1
close $fd

int fd= open(″/dev/keyleds″, O_WRONLY);
write(fd, ″A0B1C2D1″, 8);
close(fd);

int fd= open(″/dev/keyleds″, O_WRONLY);
write(fd, ″A0B1C2D1″, 8);
close(fd);

Shell

Tcl

C/C++

std::ofstream(″/dev/keyleds″).write(″A0B1C2D1″, 8);std::ofstream(″/dev/keyleds″).write(″A0B1C2D1″, 8);

C++

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

15

Data Transmission vs.
Sender/Receiver Synchronisation

 The key insight here is:

 Transmitting any number of data bytes between a source
and a sink often is the easy part ...

 … with the more difficult challenge is to enable the sending
and receiving end to tell or find out each others readiness

 Following the Unix model

 Read and write operations are by default synchronous

 I.e. the sender/receiver may be automatically suspended –
without consuming CPU cycles – and resumed

 With event driven designs as asynchronous counterpart

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

16

The Pipeline Abstraction

 The Pipeline abstraction – a prominent feature of early Unix –
provides an elegant and efficient way to

 Combine data transmission

 with sender/receiver synchronisation
 A pipeline (aka FIFO)

 Is associated with buffer for a certain amount of data

 Suspends the receiver until data becomes available

 Suspends the sender if the buffer space is filled

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

17

Classic Pipelines

 To set-up a classic pipeline on Unix (Linux) there must be

 either a parent-child or child-parent relationship between
sender and receiver

 or both must be siblings, i.e. descendants from a common
ancestor that prepared the connection

 Therefore the typical use of pipelines in Tcl applications is to

 write data to a receiving process as its standard input

 read data from a sending process as its standard output

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

18

Named Pipes

 To overcome the common ancestor limitation Unix System V
added Named Pipes

 Such have an entry in the file system

 When opening a named pipe the rendezvous principle is
applied, i.e. the process “arriving” first is resumed

 A reader that comes first has to wait for a writer
 A writer that comes first has to wait fro a reader

 As soon as reader and writer are present, data exchange
happens equivalent to a classic pipeline

 It is even possible to remove the file system entry then

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

19

(Unix/Linux) Device Files

 Serial data streams sent or received through hardware
interfaces are not different from any other streamed data

 On Unix/Linux there is an entry in the /dev-directory

 It might be named /dev/ttyS0, /dev/ttyS1, … (or comX
on Windows) … but also completely different – RTFM!

 Same for USB interfaces giving access to serial data – including
but not limited to USB-RS232 converters – except ...

 … the device name may not be present as directory entry
until the USB hardware is connected

 … some more device specific set-up might be necessary,
e.g. creating a “hot plug script” could become necessary

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

20

Configuring RS232
(Commonly Supported Options)

 Typically required transmission parameters can be set

 when opening the device file: open … -mode spec

 any time later: fconfigure … -mode spec
 where spec is baud,parity,databits,stopbits

 More options may depend on hardware and/or driver, e.g.

 Hardware flow control: -handshake type
 where type is none, rtscts, dtrdsr, or xonxoff

 Software flow control (XON / XOFF): -xchar xnxf
 where xnxf is a list of the two characters sent for XON

(enable sending) and XOFF (stop sending)

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

21

RS232 Advanced Usage

 Again depending on appropriate driver / hardware support ...

 … output control signals

 RTS, DTR (hardware lines) and
 BREAK (logical zero on data line for 250..500 msec)

 may be generated (asserted) with
 fconfigure … -ttycontrol …

 … input control signals

 CTS, DSR, DCD, and RI (hardware lines)
 may be queried with

 fconfigure … -ttystatus

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

22

Using TCP/IP-Sockets in Tcl

 Tcl provides

 Server sockets waiting in the “half-open” state …
 … until a connection request comes in …
 … triggering a previously registered handler …
 … handing over a file handle which represents ...
 … a bidirectional stream connection with the client

 Client sockets to initiate a connection to a server ...
 … returning of a file handle which represents …
 … a bidirectional stream connection with the server

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

23

Providing and Using
Web-Interfaces in Tcl

 Providing a Web-Interface to a Tcl application means:

 Provide a server socket and then …

 … “talk HTTP” over the bidirectional connection that is
eventually created

 Using a Web-Interface in an Tcl application means:

 Initiate a socket connection and then …

 … “talk HTTP” over the bidirectional connection that is
eventually returned

 All in all: you have to know a bit of HTTP and little of Tcl!

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

24

Database Access in Tcl

 TDBC is the generic interface and Tcl 8.6 is shipped with
support for

 MySQL

 ODBC

 PostgresSQL

 SQLite
 You will also find specific Tcl extensions for Oracle (oratcl),

Informix (isqltcl), Adabas (AdabasTcl)...

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

25

Spawning Child Processes

 The Tcl command exec spawns a child process (not
necessarily implemented in Tcl), then by default

 Arranges to catch the child process' output

 Suspends the calling Tcl parent until the child terminates

 Finally
 delivers the child's standard output via its return value

(which the caller may access by putting the exec
command in square brackets)

 or issues an error (which the caller may handle via a
catch command, if the child ended abnormally)

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

26

Reading Standard Output
from a Child Process

 The open … r command behaves special if the file name
argument starts with a vertical bar (|):

 The remainder of the file name argument then is considered
to be an external command that will subsequently be started

 The file handle returned is the read-end of a classic pipeline

 The other end is connected to the child's standard output
 The Tcl application then runs concurrently with the child and

may read the pipe

 Asynchronously by registering a handler with chan event

 Synchronously – by simply using gets or read

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

27

Writing to Standard Input
of a Child Process

 The open … w command behaves special if the file name
argument starts with a vertical bar (|):

 The remainder of the file name argument then is considered
to be an external command that will subsequently be started

 The file handle returned is the write-end of a classic pipeline

 The other end is connected to the child's standard input
 The Tcl application then runs concurrently with the child and

 typically writes to its pipe end synchronously with puts, but

 might be suspended until the child catches up reading

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

28

Adding C/C++ Modules
Using SWIG

 Adding a new command implemented in C/C++ requires to:

 Register the command (name and entry point) in Tcl's
lookup-table

 Provide some “clue code” to convert ...
 … between what the Tcl provides or expects and ...
 ... the command parameter types as defined in C/C++

 SWIG is a tool to create the registration and glue code

 Details are based on an interface description …

 … with a very familiar look to any C/C++ programmer
 Once more: if you can do in in C/C++ you can do it in Tcl!

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

29

Xillybus – No Plug!

 See http://xillybus.com/

 Looks actually very promising to a Unix veteran!

 But until today I have only flicked through the docs

 Currently I have not any practical Xillybus experience!

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

30

Epiloque

 There once was a Tcl enthusiastic MSfZ proclaimer ...

 … who had bought a multimeter with an RS232 interface ...

 … wrote some “remote display software” for just for fun …

 … and (mostly) forgot about it
 Ten years after … (no, not the rock giants are referred to here)

 … that person tought a Tcl course to FPGA programmers …

 … thought that Tcl software would make a nice example …

 … had to spend nearly an hour to find the serial cable …

 … and finally (ruffle – rataplan – drum roll) ...

continued ...

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

31

The MM Remote Display Software
Still Worked Flawlessly

 Without changing a single line of code

 though written long ago

 for a substantial earlier version of Tcl and Tk

 back then on a Linux/Windows release as of a decade ago

… that trusty ol' Tcl Horse!
 (now: go and try this with some other old windows software ☺)

...continued

2013-05-15Technische Beratung für EDV, Dipl.-Ing. Martin Weitzel, 64380 Roßdorf, Germany

Page

32

That‘s All

Thank You
for Participating

Any (more) Questions?

