
Brought to you by

Dipl.-Ing. Martin Weitzel

Technische Beratung für EDV

http://tbfe.de

Inhouse Training for Rohde & Schwarz

2019-01-21 + 2019-01-22

Programming Logic Competence Center

http://plc2.com

Tcl Quick Introduction

Introducing Tcl as Scripting Language

for Design Tools and More …

Styled with styling.css by Martin Weitzel

*: You may use and copy the electronic version of this document freely as long as you comply with the

Creative Commons BY-SA License. As the presentation has been created with the free HTML4-Tool

Remark, its content is written using the Markdown-Syntax. Therefore you may even enhance the purely

electronic (non-printed) form with annotations only by means of an ordinary text editor. Just hit the P-

key while viewing it in an internet browser and follow instructions.

1 / 146

http://tbfe.de/
http://plc2.com/
file:///home/martin/Desktop/WeTrain/We-Train-master/PLC2/WeTrain-RuS_Tcl/styling.css
http://creativecommons.org/licenses/by-sa/2.0/
http://remarkjs.com/
http://daringfireball.net/projects/markdown/syntax

Agenda

1. The Tool Command Language

2. The Programming Language Tcl

3. The Tcl Standard Library

4. Using Tcl in Vivado and Beyond

Each part consists of some "theory" or background information and is

enhanced by practical demonstrations, for which is left sufficient room in

the time slot.

You are welcome to contribute – with your questions* and also proposals

what to try or which small changes to make, to see the outcome.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Your questions will of course be answered to the best of the speaker's abilities … and – on request – also

in private communication during the breaks between the four parts.

2 / 146

http://tbfe.de/
http://plc2.com/

Part 1: The Tool Command Language

A Look at Tcl's Internal Structure

Chances for Tools (like Vivado)

Tcl Limitations (for Tool Users)

Chances (not only) for Tcl-Aficionados

Tcl's Minimal Syntax

Variables and Subroutines (quickly*)

Three Ways of Quoting

Syntax (Summary and Wrap-Up)

Trying and Understanding Tcl

Note: All of the above will get practical coverage through the

presentation. Any question is welcome, especially if it leads to varying the

examples used (that way controlling how much emphasis is put onto

which topic).

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: This will be expanded in Part 2.

3 / 146

http://tbfe.de/
http://plc2.com/

A Look at Tcl's Internal Structure

Understanding a little bit of Tcl's internal structure is helpful to get the big

picture how Tcl is integrated into tools like Vivado.

Basically all (textual) input undergoes Syntax Analysis,

including some relatively simple substitutions,

the first word is looked-up in a table as name of a command,

which is finally executed.

The command may be some Tcl subroutine – defined by the user or at

startup of a tool in a configuration file – or it may be implemented in

C/C++ and made available in a shared library (DLL).

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 4 / 146

http://tbfe.de/
http://plc2.com/

Chances for Tools (like Vivado)

Tcl lends itself perfectly to be extended by tools*

The look-up table consulted at the end of syntax analysis just needs

to refer to tool-specific commands, in addition to (or instead of) what

is built-in.

Vivado uses this extensively, adding a huge number of Tool specific

commands.

The latter are not the main topic of the following presentation, its focus

is what Vivado users need to know to cope with Tcl in general.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Not to much surprise, as this was an original goal of Tcl's initial design by John Ousterhout.

5 / 146

http://tbfe.de/
http://plc2.com/
http://de.wikipedia.org/wiki/John_Ousterhout

Vivado Tcl Documentation

For more information on the Tcl Vivado Integration see the following

Vivado User Guides:

Using Tcl Scripting

Tcl Command Reference

Using Constraints

The first – ug894 (~70 pages) – introduces into Tcl from the Vivado

perspective, but is far from exhaustive with respect to Tcl.

The second – ug835 (1000+ pages) – is exhaustive with respect to the

commands Vivado adds to Tcl, but most of it directly refers to the design

objects (as represented in the internal database) on which the XILINX

design flow for FPGAs is based.

The third – ug903 (172 pages total) – in some of its parts covers Tcl

scripting in the special area of specifying design constraints.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 6 / 146

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug894-vivado-tcl-scripting.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug835-vivado-tcl-commands.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug903-vivado-using-constraints.pdf
http://tbfe.de/
http://plc2.com/

Running Tcl from Vivado

An interface to Tcl is provided by Vivado in several forms:

By using the Tcl console provided by Vivado.

By choosing an start-up option (like -tcl or -batch) and control every

action of Vivado from Tcl.

By switching between the Vivado GUI and Tcl Scripting with the

commands:

stop_gui – issued from Vivado's Tcl console

start_gui – issued from Vivado's direct scripting mode

The Tcl console in the Vivado GUI has many useful options not provided

in direct scripting mode, like extended syntax highlighting and context

dependent completion and help features.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 7 / 146

http://tbfe.de/
http://plc2.com/

User Communities

More information on Tcl is available in user communities like these:

The Tclers Wiki – general Tcl (and Tk) topics http://wiki.tcl.tk

The XILINX Tcl Store – with focus on using Tcl with XILINX products

http://www.xilinx.com/products/design-tools/vivado/Tcl-store.html

Of course, you may also start a general search with your Tcl questions

by using Google or any of its competitors, or visit less specific but

usually well informed communities, like StackOverflow.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 8 / 146

http://wiki.tcl.tk/
http://www.xilinx.com/products/design-tools/vivado/Tcl-store.html
https://www.google.de/#q=Tcl%2FTk
http://stackoverflow.com/questions/tagged/tcl
http://tbfe.de/
http://plc2.com/

Chances (not only) for Tcl-Aficionados

As you has made it up to here, it is assumed you want to learn Tcl for

making improved use of Vivado, so:

Why not use Tcl and possibly Tk for other purposes?

You could – e.g. – use the knowledge acquired some day also for

writing small tools to automate recurring (… stupidly repeating,

terribly boring, mostly uninteresting …) tasks of your daily work,

provide easy to use interfaces for users in technical environments,

but with lesser affinity to scripting, or

implement parts of the software for an embedded device based on a

ZYNQ-board in Tcl(/Tk).

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 9 / 146

http://tbfe.de/
http://plc2.com/

Tcl Outside Vivado – Example 1

You need to debug, maintain and occasionally improve somewhat

complex, automated Vivado design flow based in Tcl Scripting?

Provide the necessary hooks on the Vivado side,

instrument your Tcl script in Vivado accordingly,

and add an external Tcl/Tk client to filter debug- and trace-information

and further inspect what`s going on in Vivado.

Has been done – by the author of this* … and others probably too.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: With respect to the Tcl client – the application monitored and debugged was a C++ application with

concurrently running C++ processes under the control of a supervising server, coordinating the TCP/IP

interface.

10 / 146

http://tbfe.de/
http://plc2.com/

Tcl Outside Vivado – Example 2

For an embedded device with a touch small touch screen, running a Linux

based application, implement the high-level control logic including in

Tcl/Tk.

Large parts of the development work can be done without access to

the "real hardware":

Either on a hosted Linux Version (chose your favorite – Tcl/Tk is

available not only on Linux but on most any U*ix based OS, like

BSD, Mac …) …

… or on Windows (e.g. using the Tcl/Tk implementation freely

available from [Active State].

You can show (and try-out) a working prototype early to your

customer with the option to shift time critical parts closer to the

hardware (Tcl → C/C++ → kernel driver or module → FPGA → dedicated

hardware).

Has been applied – by the author of this* … and others probably too.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 11 / 146

http://tbfe.de/
http://plc2.com/

Tcl Outside Vivado – Example 3

For an embedded device without any real user interface (except, maybe,

some few, tiny buttons and Leds) but an Ethernet jack

provide a socket based communication from the embedded device

to some convenient control application running on a PC or Linux Host.

This can be done – and has been done – fully in Tcl/Tk by the author of

this and others probably too.

You definitely need* no expertise in any of the following areas:

providing and configuring apache or some other web-server;

using PHP, Pearl, Python, … whatever on the embedded side;

programming the control application in JavaScript, Ruby, … whatever.

To put it 100% clear:

All of your code will be Tcl (when using TK for the GUI).

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Of course, you have also the option to use Tcl on the client-side only, or for the control application only,

especially the latter, if you want to control your embedded device from every standard web browser …

but then, of course, you might have to learn a bit of HTML and JavaScript, at least.

12 / 146

http://tbfe.de/
http://plc2.com/

Tcl Limitations (for Tool Users)

The use of Tcl as command language in a tool also has a drawback.

Every input first passes through Tcl's syntax analysis, especially with

respect to the

the spelling of identifiers (e.g. permissible characters), and

the special meaning of some characters (like apostrophes,

brackets …)

This may – in small areas – collide with the conventional use of the

above in the domain specific use in other languages, tool users are

accustomed to (like VHDL or Verilog).

As Tcl extensible in a number of ways, Vivado is even able to resolve

some of these collisions, while others must be accepted by Vivado

users, who have to learn how to avoid adverse effects.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 13 / 146

http://tbfe.de/
http://plc2.com/

Tcl's Minimal Syntax

The Tcl syntax is minimal in various aspects – these are its main steps:

1. Line Concatenation

2. Command Separation

3. Word Separation

4. Substitutions of

Non-Printing Characters

Variables by Content

Subroutines by Return Value

Alongside the above, Several Kinds of Quoting are honoured:*

Backslash-Quoting

Partial Quoting

Full Quoting

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Each kind of quoting has its specific effects, as will be detailed soon.

14 / 146

http://tbfe.de/
http://plc2.com/

set greet "hello, world"

puts $greet

The output – of course – is:

hello, world

All output will be in a line of its

own, i.e. puts automatically adds a

newline at the end, unless …

… it is requested not to do so:

puts -nonewline $greet

A Basic Example

The following example will be used in many variations for a detailed

coverage of the Tcl syntax:

From here on, please pay close attention to the presentation!

In addition to the print-outs in your hands a lot more can be learned

following the "live examples".

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Another difference, not relevant for the moment, is this: Any output to the screen is buffered and not

actually visible until a newline is printed. Some consequences of this and how they can be avoided will

be demonstrated later.

15 / 146

http://tbfe.de/
http://plc2.com/

puts\

$greet

puts \

$greet

Line Concatenation

Line concatenation takes place if a line ends with a backslash.

With the current knowledge of Tcl this can be demonstrated as following:

Looking closely to spot the difference between the command on the left

and on the right should reveal that the newline character after the back-

slash is not completely purged but replaced by a space, explaining why all

the following commands result in errors, but each for a different reason.

pu\

ts $greet ;# attempt to call the non-existing command 'pu'

puts $\

greet ;# 'puts' gets two separate arguments, '$' and 'greet'

puts $g\

reet ;# attempt to substitute a variable named 'g'

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 16 / 146

http://tbfe.de/
http://plc2.com/

Command Separation

Next in the Tcl syntax analysis is looking for command separators.

Besides an – unmasked(!) – newline

also semicolons separate commands.

As a trivial example, the following prints a prompt and then gets some

interactive input:

puts "start from count: "; flush stdout; gets stdin count

Usually in Tcl two commands are not written in the same line, unless

they belong closely together and should not be accidentally separated.

puts -nonewline $greet; flush stdout ;# show output unbuffered

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: A realistic examples that makes it necessary to use flush is when the output of some program should

become visible in small portions, but all in the same line, showing a "count-down":

 while {[incr count -1] > 0} { after 1000; puts -nonewline "$count .. " }; puts TAKING-OFF!

17 / 146

http://tbfe.de/
http://plc2.com/

So all of the below equivalent:

puts $greet

puts $greet

 puts $greet

 puts \

 $greet

The option to insert more than

one space* were a single one is

sufficient is rarely used in Tcl.

But sometimes the readability of

regular and systematic code

may improved by using

columnar adjustments to align

related parts.

Word Separation

Word separation has happened already in all the examples until, but may

not have been noticed.

Word separators are SPACE and TAB (in ASCII 0x20 and 0x09),

written adjacently any number of the above is a single separator.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Using TAB instead of SPACE is discouraged or even banned in some style guides, because it usually

depends on user preference set in the editor how they are expanded, hence code may look different for

developers with different settings.

18 / 146

http://tbfe.de/
http://plc2.com/

Substitutions

There are several kinds of substitutions with quite different purpose*

Unprintable characters are substituted for some -sequences (basically

the same set as in C/C++).

Characters with a special meaning are substituted by themselves if

preceded by a backslash (i.e. taken verbatim without being special).

If $ is followed by a "variable name" (composed from characters,

digits, or underscore) the content of that variable is substituted.

Any part of a command enclosed in square brackets will be taken as a

(nested) Tcl command of its own:

it will be executed during the analysis of the embedding

command, and

its return value will be inserted in place of the whole unit.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: In addition, line concatenation (already covered) may also be seen as a kind of substitution.

19 / 146

http://tbfe.de/
http://plc2.com/

Variables and Subroutines (quickly)

At that point, a quick (and not very complete) introduction to

Variables and

Subroutines

makes sense, as otherwise not many meaningful examples are possible

Both topics will get additional and deeper coverage in Part 2.

For now, they are in kind of "cookbook-style", as suggested by the live

examples.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 20 / 146

http://tbfe.de/
http://plc2.com/

Variables (quickly)

Variables are defined and their content can be substituted.

To define a variable the Tcl command set is used:

It can have one or two arguments:

The first is the name of the variable.

The second (if present) is the new value.

It always returns the value (current or new).

To substitute the current value of a variable, its name is preceded by a

dollar sign:

set greet "hello, world"

puts $greet

set greet "Guten Morgen"

puts $greet

Accessing variables that do not exist cause an error.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 21 / 146

http://tbfe.de/
http://plc2.com/

Subroutines (quickly)

From the caller's perspective, a Tcl command can be anything:

a built-in command implemented in C or C++ (provided by the Tcl

core or the tool that uses Tcl as its command language);

a subroutine implemented in Tcl,

either of from the Tcl Standard Library

or (again) supplied by a specific tool using Tcl as command

language;

a subroutine implemented in Tcl and previously defined by the same

script that also calls it.

In any case the Tcl Syntax Analysis will identify what is to call by the

first word, while more words are arguments and handed over to

the subroutine to be used inside for any purpose*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Note that exactly that is an attractive feature of Tcl, as it allows for "incremental learning": the Tcl syntax

itself is minimal and can be fully comprehended in little over an hour. Everything else to learn is on part

of some command and hence depends what is required to solve a particular problem in hand.

22 / 146

http://tbfe.de/
http://plc2.com/

Pre-Defined Subroutines

As any existing Tcl command is a subroutine too, and called as any

subroutine, the basics can be easily understood by what has been used so

far: arguments and its return value can be inserted into another

command line:

set x 10 ;# calling subroutine 'set' with arguments 'x' and '10'

 ;# to the effect that variable x is set to 10

incr x ;# calling subroutine 'incr' with argument 'x'

 ;# to the effect that variable x is incremented by 1

incr x -5 ;# calling subroutine 'incr' with arguments 'x' and '-5'

 ;# to the effect that variable x is decremented by 5

puts $x ;# calling subroutine 'puts' with an argument that is the

 ;# substituted content of variable x

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 23 / 146

http://tbfe.de/
http://plc2.com/

Using Command Substitution

To understand command substitution ([…]) it is necessary to know what

a subroutine returns:

set and incr – as used the last page – return the new value assigned

with by that operation;

set with only one argument returns the current value of the variable;

puts returns and empty string.

Knowing this, it should be easy to tell what will be the effect of the

following commands (continuing from the last page):*

puts [incr x] ;# prints 7 (10+1-5+1) to the console

puts [set x] ;# prints 7 (content of x) to the console

puts [set x 1] ;# sets variable x to 1 and prints 1

 # (new content of x) to the console

puts -nonewline [puts $x] ;# a contrived way to do 'puts $x' ...

puts [puts $x] ;# ... as before, plus another newline

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Well, may be not quite easy in the last two examples, but feasible – the key point is to understand the

difference between commands that print something on the console (puts) and the return value of

commands (any command has one).

24 / 146

http://tbfe.de/
http://plc2.com/

Defining Subroutines

Subroutines are defined with the command proc,

followed by the name that will later be used to call (execute) them,

the list of their "formal parameters", and

the Tcl code that contributes their "body".

As the topic gets its real coverage only in the next part, the following

example does something rather unusual: It defines a command with the

exotic name = which does nothing but print its arguments:*

proc = {args} {

 foreach arg $args {

 puts "[incr n]:>$arg<:"

 }

}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Note that up to Tcl version 8.4 it was necessary to set n 0 zero before entering theforeachloop. Since

Tcl 8.5incr` assumes for an unset variable it will start with zero.

25 / 146

http://tbfe.de/
http://plc2.com/

The Final Command Line

Understanding what is actually executed when Tcl executes a command –

i.e. what the final command line looks like after syntax analysis, and when

all substitutions are done – is crucial for understanding the Tcl syntax.

The subroutine defined on the last page can help here.

Try it as follows:*

= set greet

= set $greet ;# assuming greet is set to some value

= set greet whatever ;# this, of course, will NOT change greet ...

= puts [incr greet] ;# ... OTH, this WILL change greet (why?)

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: What makes an interesting experiment is to use = with its own definition:

 = proc = args {

 set n 0

 foreach arg $args {

 puts "[incr n]:>$arg<:"

 }

}

26 / 146

http://tbfe.de/
http://plc2.com/

Intermezzo: "Funny Names" (1)

Unlike most any other programming language Tcl does not restrict what

the name of a function or variable has to look like, because

accessing variables and

executing functions

is "just table lookup" only, where the name serves as key and therefore

can be everything.*

Except for rare cases it does not seem advisable to exploit that

freedom.

Whether the subroutine from the last page falls into that category or not

is disputable.

The "funny name" = was used for it to point out that it does nothing with a

real purpose … except to help Tcl-beginners to understand how a

command looks after the Tcl Syntax Analysis is done and its substitutions

are applied.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Also note that procedures and variables with the same name may coexist, since they are looked up in

different tables.

27 / 146

http://tbfe.de/
http://plc2.com/

Intermezzo: "Funny Names" (2)

As a general rule: Avoid unusual names – even if Tcl supports them –

and stay with the rules of most high-level programming languages:

Compose name identifiers from letters, digits and underscore only.*

Having said that, it might sometimes be convenient or even elegant to

use "funny names", especially

for variables that store kind of "internal secrets" and are not

expected to be touched or modified often,

for subroutines that do something very unusual or special, so the

pure sight of the name should alert about this.

Hint: a nifty way to temporarily remove a subroutine definition, maybe

to find out in which way other code depends on it, is to prepend a # to its

name (not the proc command, this would only comment out one line).

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Besides readability this also is also necessary so that the content of variables can be easily expanded in

the command line by prepending a $ (dollar sign).. Variable names not only consisting of letters, digits

and underscore need to be enclosed in curly braces when used after $, while for subroutine no special

care needs to be taken. And finally, as crazy as it may sound: it is even possible to use an empty string

as name – just write an empty pair of curly braces or two adjacent double quotes where the name is

expected.

28 / 146

http://tbfe.de/
http://plc2.com/

Three Ways of Quoting

There is one element in Tcl Syntax Analysis that has been ignored so far.

Quoting

Basically quoting allows to hide parts of a command line from ordinary

syntax analysis, so it shows up verbatim finally, when a command is

executed and its arguments are handed over.

Quoting with a (preceding) back-slash

Quoting with (surrounding) double quotes

Quoting with (surrounding) curly braces

Each one makes sense depending on the context and which parts of a

command needs to outlive syntax analysis.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 29 / 146

http://tbfe.de/
http://plc2.com/

Quoting with Backslashes

This is a variant and extension of what was already explained in the

sections on Line Continuation and Non-Printing Characters.

Any following character will be taken verbatim, i.e.

the backslash is removed, and

the character following is released from its special function,

(assuming it has any, otherwise it simply stands as it is).

Note that the backslash may also be used to quote itself.

More will be demonstrated on the page showing Quoting by Examples.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 30 / 146

http://tbfe.de/
http://plc2.com/

Quoting with Double Quotes

Until the next unquoted double quote*

no newline or semicolon will be taken as command separator,

no horizontal white space* will be taken as word separator, and

no reduction of adjacent horizontal white space to a single space

takes place.

What still has its special function are

backslashes (for producing non-printing characters and for quoting),

dollars signs (for substituting the content of a variable), and

square brackets (for evaluating what is inside as separate

command and substituting the return value).

More will be demonstrated on the page showing Quoting by Examples.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Double quotes are what in German is known as Gänsefüßchen.

31 / 146

http://tbfe.de/
http://plc2.com/

Quoting with Curly Braces

It this way

every character inside is released from its special function in the Tcl

Syntax Analysis,Q

except that contained curly braces are counted to find the final

closing brace, matching the first opening brace, and

back-slashes do not change any content inside the curly braces, but

may be used to disable counting, if used directly to the left of an

(opening or closing) curly brace.

More will be demonstrated on the page showing Quoting by Examples

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 32 / 146

http://tbfe.de/
http://plc2.com/

Try the following:

= puts "hello, world"

= puts hello,\ world

= puts {hello, world}

= puts hello, world

= puts ""

= puts

The command puts – in the form

used here* – expects exactly

one argument, which may be

any string and will printed

verbatim on the console

(followed by newline character).

Quoting by Example (1)

The best way to demonstrate the effects of quoting is with a subroutine

which simply prints its arguments, like the one defined here:

Be sure to understand that puts receives

exactly one argument in the first three examples, and

cannot see the difference in quoting(!),

two arguments in the fourth example (so it were an error),

one (empty string) argument in the firth example, and

no argument at all in the last example (so it were an error).

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Besides supplying the option -nonewline it is legal to use puts with two arguments, if the first one refers

to an open file, as will be demonstrated in Part 3.

33 / 146

http://tbfe.de/
http://plc2.com/

= puts \n

= puts " "

= puts hi! ;# ho!

= puts "hi! ;# ho!"

= puts {}

= puts {{}}

= puts "{}"

= puts "\""

= puts \\

= puts "\\"

= puts {\\}

= { now see { that }! }

= { now see " that "! }

= " now see { that }! "

= " now see " that "! "

= {1" is 25,4mm}

= "1\" is 25,4mm}

= 1\"\ is\ 25,4mm

= {count {the} braces}

= {count {all {the}} braces}

= {count {all? the\}} braces}

= {count \{all? the\} braces}

Quoting by Example (2)

Also try the following …

… and request (many) more demonstrations – with explanations – if you

think it helps to get a good understand of Tcl's quoting rules.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 34 / 146

http://tbfe.de/
http://plc2.com/

Syntax (Summary and Wrap-Up)

As John Ousterhout states in his book "Tcl and the Tk Toolkit", some

difficulties a Tcl novice may have stem from the assumption, the syntax

must be more complex as it actually is.

Tcl-Syntax can be described very briefly as:

Looking-up separators (for commands and words)

Doing substitutions (variable content and command return values)

All the way paying attention to quoting (\, " … ", { … })

Plus one more rule – may be an even more important one with respect to

simplicity: Do not repeat any of the above, once it is done.

Therefore – and because looking up separators happens before variables

and command return values are substituted – the following …

proc say_goodbye {} { return "and thanks for all the fish" };

puts [say_goodbye]

… hands exactly one argument to puts, not five.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 35 / 146

http://www.amazon.de/Tcl-Toolkit-Addison-Wesley-Professional-Computing/dp/032133633X
http://tbfe.de/
http://plc2.com/

Trying and Understanding Tcl

From the author's point of view, one of the biggest advantages of Tcl over

a compiled language like C or C++* is this.

Most things in Tcl are easy to try – just start a tclsh* and enter examples

of the commands you want to understand.

The key word here is understand.

Trying "to understand" does not mean get something to work by using

"trial and error" only!

You may well try and vary and try again and vary again … only

in the end you should not any longer be surprised

why it works, and

how it works

but be able to explain it to your colleagues, or at least to yourself.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Or wish if you build a GUI based on Tk.

36 / 146

http://tbfe.de/
http://plc2.com/

Part 2: Tcl as Programming Language

Quick Syntax Summary*

Essential Data Structures

Flow Control

Subroutines

Error Handling

Organising Reuse

Note: All of the above will get coverage through practical "live" examples

during the presentation, and all attendees are invited to contribute

proposals especially how to vary a certain example or what else to try – of

course with the effects and final results always explained.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: This is just an extremely brief recapitulation of the section on Tcl's Syntax with back-links to the detailed

coverage in Part 1.

37 / 146

http://tbfe.de/
http://plc2.com/

Understanding the Syntax (quickly)

Why repeat anything in the era of electronic documents? We can link!

For short summary of steps see here.

You will find more

about command separation here …

… and about word separation here.

Substitutions that eventually may occur are detailed

for non-printing characters here,

for variable content here, and

for subroutine return values here.

Finally you need to understand

quoting – see here, with examples here, and

that no step repeats, once completed – see here.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 38 / 146

http://tbfe.de/
http://plc2.com/

Essential Data Structures

Traditionally* there are two important ways to structure data in Tcl:

Lists:

essentially sequential containers (of strings), numerically indexable

with 0-origin (so rather like native arrays in C/C++)

Arrays:

essentially (string-based) look-up tables, aka. Hashes in some other

scripting languages (so rather like std::map<string, string> in C++)

Dictionaries:

essentially "key-value" associations which may nest to any depth

(unlike arrays which only allow a single level)

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 39 / 146

http://tbfe.de/
http://plc2.com/

Lists 101 – The Basics

Basically lists look similar to Tcl commands in that they may consist of

any number of words:

set month_names "Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec"

The commands most often applied to lists* are llength and lindex:

puts [llength $month_names] ;# => 12

puts [lindex $month_names 0] ;# => Jan

puts [lindex $month_names 1] ;# => Feb

puts [liindex $month_names 11] ;# => Dec

puts [lindex $month_names 12] ;# => (empty string)

puts [lindex $month_names end] ;# => Dec

puts [lindex $month_names end-1] ;# => Nov

Also, lists are often processed with foreach, fully introduced later:

foreach month $month_names { puts $month }

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: NB: "applied to lists" (i.e. the content), not "applied to list variables" (the name), therefore $month_names!

40 / 146

https://www.tcl.tk/man/tcl/TclCmd/llength.htm
https://www.tcl.tk/man/tcl/TclCmd/lindex.htm
https://www.tcl.tk/man/tcl/TclCmd/lindex.htm
http://tbfe.de/
http://plc2.com/

Lists 101 – Nested Lists

If constructed properly, lists may also nest within each other, so with

set cities {Paris {New York} London Berlin}

the following list elements can be accessed:

puts [llength $cities] ;# => 4

puts [lindex $cities 0] ;# => Paris

puts [lindex $cities 1] ;# => New York

puts [lindex $cities 2] ;# => London

puts [lindex $cities 3] ;# => Berlin

As the second element (with index 1) is itself a list, its parts can also be

accessed individually:

puts [lindex [lindex $cities 1] 0] ;# => New

puts [lindex [lindex $cities 1] 1] ;# => York

puts [lindex [lindex $cities 1] end] ;# => York

puts [lindex [lindex $cities 2] 0] ;# => London

puts [lindex [lindex $cities 2] end] ;# => London

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 41 / 146

http://tbfe.de/
http://plc2.com/

Lists 101 – More on Nested Lists

It is also possible* to apply several indices to select from nested lists in a

single lindex command:

same effect as commands on last page

…

puts [lindex $cities 1 0] ;# => New

puts [lindex $cities 1 1] ;# => York

puts [lindex $cities 1 end] ;# => York

…

This will also work with the lset command to modify elements of a list:

lset cities 0 "City of Love" ;# Paris => City of Love

lset cities 1 1 Amsterdam ;# New York => New Amsterdam

NB: As the lset command modifies a list, a variable name must be

specified as argument (cities), not its content ($cities).

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: In more recent Tcl versions only, i.e. it was not originally a feature of Tcl, so you might not see it used in

all applicable contexts.

42 / 146

https://www.tcl.tk/man/tcl/TclCmd/lset.htm
http://tbfe.de/
http://plc2.com/

Lists 101 – Constructing Lists

Care has to be taken when lists are constructed from variables with

arbitrary content.

The following will not work as (possibly) expected:

set capital_of_AR "Buenos Aires"

set capital_of_DE Berlin

set capital_of_GB London

…

set capitals "$capital_of_AR $capital_of_DE $capital_of_GB"

A more careful approach will use the command list, which will work as

(probably) expected:*

set capitals [list $capital_of_AR $capital_of_DE $capital_of_GB]

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 43 / 146

https://www.tcl.tk/man/tcl/TclCmd/list.htm
http://tbfe.de/
http://plc2.com/

Lists 101 – Extending (and Shorting) Lists

Appending to a list this should also always be done in a secure way:*

set cities "$cities $other" ;# bound to fail for arbitrary content

lappend cities $other ;# always applies the "right" quoting

Finally there is the command replace, which not only allows to do what its

name seems to suggests …

puts [lreplace $cities end end Washington]

puts [lreplace $cities 1 2 Paris Madrid Lissabon]

… but also allows for removing content:

puts [lreplace $capitals 1 2]

Note that lreplace does not modify the content of a list variable but

takes a list as argument and returns a modified list.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: At least if neither the content of the list, nor the value appended is predictable in that it has no

"problematic" content. E.g. assume other may hold any value also something as weird as "{\ }}`").

44 / 146

http://tbfe.de/
http://plc2.com/

An array index may be number …

set month(1) January

set month(2) February

…

set month(12) December

… but also any string:

set days(January) 31

set days(February) "28 or 29"

…

set days(November) 30

set days(December) 31

Using the value follows the same

pattern as setting it …

puts $month(2)

puts $days(November)

… but may also assume more

complex forms, as the index may

also come from another variable:

set i 12

puts $month($i)

puts $month([incr i -1])

puts $days($month(2))

Arrays 101 – The Basics

Arrays are assumed by Tcl if a variable name follows a special pattern:

After the regular name of a variable

(without any space in between)

follows a pair of round parentheses, holding the index.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 45 / 146

http://tbfe.de/
http://plc2.com/

set i 1

set j(1) 2

set k(2) 3

set v(3) "here i am"

… that way:

puts $v($k($j($i)))

set x 12

set y whatever

set v($x|$y)

But ambiguity here!

set x left| ; set y right

set x left ; set y |right

Arrays 101 – Nested Indices and Multiple Dimensions

Actually indices can nest to any depth, which can be easily tested …

Multiple array dimensions are not directly supported but may be easily

simulated by

writing two (or more) indices adjacent,

separated with some unique character.

The only crux here is to find a separator for which it can be ensured that it

will never be part of a valid index.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 46 / 146

http://tbfe.de/
http://plc2.com/

Arrays 101 – Accessing a Whole Array

The Tcl command array has several subcommands, all accessing a whole

array in some way:

array size name – returns number of entries in array

array names name – returns list of all indices in array

array get name - returns list of index-value pairs in array

array set name … - sets array from the list … of index-value pairs*

… (the above is not exhaustive) …

Feel free to propose examples of the above be demonstrated live and

further explained.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: What do you think: will this first purge the old content or just add new indices and values, in case the

array does already exists with some entries?

47 / 146

https://www.tcl.tk/man/tcl/TclCmd/array.htm
http://tbfe.de/
http://plc2.com/

Creating a dictionary: dict

create

Modifying a whole dictionary:

dict append

dict lappend

dict merge

dict replace

dict update

Modifying single elements:

dict set

dict incr

dict unset

Accessing single elements:

dict get

dict exists

FP style dictionary processing:

dict for

dict map

dict filter

dict values

dict with

Miscellaneous operations:

dict size

dict keys

dict values

Dictionaries 101 – The Basics

Dictionaries are a more recent addition to the Tcl language and

consistently managed via the dict command.

Grouped by function the subcommands are:

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 48 / 146

https://www.tcl.tk/man/tcl/TclCmd/dict.htm
https://www.tcl.tk/man/tcl/TclCmd/dict.htm
http://tbfe.de/
http://plc2.com/

Dictionaries 101 – Creating a Dictionary

The following creates a dictionary with three elements and stores it in a

variable named d:

set d [dict create A part1 B part2 SubSys {C Part3 D Part-4}]

First element:

key: A

value: part1

Second element:

key: B

value: part2

Third element:

key: SubSys

value: C Part3 D Part-4

Be sure to understand the value of the third element

is itself a dictionary!

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 49 / 146

http://tbfe.de/
http://plc2.com/

Dictionaries 101 – Accessing and Modifying Elements

Accessing top-level keys:

dict get $d A # => part1

dict get $d B # => part2

dict get $d SubSys # => C Part3 D Part-4

Accessing the nested level:

dict get $d SubSys C # => Part3

dict get $d SubSys D # => Part-4

Modifying a top-level key, a nested keys, and adding another nested key:

dict set d A Part-1

dict set d B Part-2

dict set d SubSys C Part-3

dict set d SubSys2 X Part-5

Note that dict get $d … uses a dictionary variable value

and dict set d … uses a dictionary variable name.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 50 / 146

http://tbfe.de/
http://plc2.com/

… could be written like this …

dict for {k v} $d {

 puts "$k: $v"

}

… to produce this output:

A: Part-1

B: Part-2

SubSys: C Part-3 D Part-4

SubSys2: X Part-5

Dictionaries 101 – FP Style Dictionary Processing

A simple loop to print all top-level dictionary elements key-value pairs …

Applying a modification to all elements:

dict map {k v} $d {set v [string toupper $v]}

The dictionary then contains:*

A PART-1 B PART-2 SubSys {C PART-3 D PART-4} SubSys2 {E PART-X}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Note that while the top-level keys (SubSys and SubSys2) were not touched the nested dictionary's keys are

just a part of the top-level key's value and would now have been turned into upper-case now if

they hadn't been yet.

51 / 146

http://tbfe.de/
http://plc2.com/

Dictionaries 101 – Miscellaneous Dictionary Operations

Number of elements:

dict size $d # => 4

dict size [dict get $d SubSys] # => 2

dict size [dict get $d SubSys2] # => 1

Only the keys:

dict keys $d # => A B SubSys SubSys2

dict keys [dict get $d SubSys] # => C D

dict keys [dict get $d SubSys2] # => E

Only the values:

dict values $d # => PART-1 PART2 {C PART-3 D PART-4} {E PART-X}

dict values [dict get $d SubSys] # => PART-3 PART-4

dict values [dict get $d SubSys2] # => PART-X

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 52 / 146

http://tbfe.de/
http://plc2.com/

(assuming variables used are set)

= while {[incr i -1] > 0} {

 # … whatever …

}

= if {$i} {

 # … whatever …

} else {

 # … whatever else …

}

Flow Control

Flow control in Tcl allows for

conditional execution (if)

two-way or multi-way branches (if-else or switch), and

repetition in various flavours (while, for, and foreach.

Before each of the above is demonstrated with examples, it is instructive

what our good ol' helper used to demonstrate quoting will say here:

= for {set i 0} {$i < 10} {incr i} { puts -nonewline "$i .. " }

= foreach m [array names $months] { puts $m }

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 53 / 146

http://tbfe.de/
http://plc2.com/

Intermezzo: expr and eval

There are two things, one that is required very often but Tcl does not

support directly, and second Tcl does implicitly all the time good but

which needs sometimes run explicitly.

expr – allows evaluation of arithmetic expressions

which the Tcl Syntax Analysis can not do directly but only through this

command;

eval – evaluate an arbitrary string as commands

which the Tcl Syntax Analysis dos all the time for with the scripts it

executes but for flow control it needs to be available explicitly.

All flow control is not implemented as part of the Tcl Syntax but by

separate commands.

In other words: If a Tcl script branches or repeats on some condition, from

the perspective of the Tcl Syntax Analysis always some command gets

started, which finally does what is expected.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 54 / 146

http://tbfe.de/
http://plc2.com/

Some basic examples:

puts [expr 1+1]

puts [expr 1 + 1]

puts [expr {1 + 1}]

puts [expr {(7*12 - 18) / 32}]

puts [expr {1.0 / 2.0}]

Some more realistic usages.

set u [expr {$i + 2*$j}]

set v [expr {sin(0.66)}]

set w [expr {

 $x == 0 ? 0 : $y/$x

 }]

Evaluating Arithmetic Expressions

Only the command expr enables Tcl to evaluate arithmetic expressions, as

demonstrated below (assume all variables used are appropriately set).

Generally expr first concatenate all of its arguments to a single long

string, which is then evaluated much similar to the expression syntax of

C/C++.

Enclosing the argument in braces is not required but recommended, as

it allows a more efficient evaluation in some contexts.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: The background is generating pseudo-code for a virtually machine Tcl uses internally, which has more

chances for optimisation if Tcl variables as part of the arguments to expr are not evaluated at the "outer

level" (i.e. variable substitution during syntax analysis) but at the "inner level" (inside the

implementation of the command).

55 / 146

https://www.tcl.tk/man/tcl/TclCmd/expr.htm
http://tbfe.de/
http://plc2.com/

[!]

Assuming val is unsigned …

set count 0

while {$val} {

 if {$val & 1} {

 incr count

 }

 set val [expr {$val >> 1}]

}

… or assuming val has 32 bit:*

set count 0

set i 32

while {[incr i -1] >= 0} {

 if {$val & (1<<$i)} {

 incr count

 }

}

Applying Bit Operations

As expr also supports the bit manipulation operations from C, any

necessary low level processing is possible.

The following example counts how many bits are set in an integral value.

As right-shifting bits in a 2's complement integral number

representation copies the sign bit, the example on the left side

above may go in an endless loop for negative values.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: The internal representation of integral numbers in Tcl typically uses native types of the underlying

hardware, so the details (size, behavior of right-shift, etc.) depends on the implementation.

56 / 146

http://tbfe.de/
http://plc2.com/

Evaluating Any String As Command

The command eval runs all the steps of Syntax Analysis on a string

handed over as argument.*

A typical example is storing a frequently used command – or a part

thereof – in a string and then execute it:

example from Vivado Tcl Reference Guide (UG835)

set runblocksOptDesignOpts { -sweep -retarget -propconst -remap }

eval opt_design $runblocksOptDesignOpts

Without the use of eval above

command separators were looked-up only once,

before the content of runblocksOptDesignOpts is substituted,

therefore the blanks separating the options would not be properly

recognized, and finally

the Vivado command opt_design would complain about wrong usage.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: More exactly eval first concatenates all its arguments into one single string, then processes the result. It

should be understood that using eval means there will be a second pass over the command line as

originally spelled, "eating-up" one (more) level of quoting. Therefore, aside from the most simple cases,

eval comes with its own set of potential pitfalls which must be carefully considered to be finally avoided.

57 / 146

http://tbfe.de/
http://plc2.com/

Simple conditional execution, i.e.

one command block, executed

when the condition is true …

if {$x < 2*$y} {

 … ;# condition true

}

… and with alternative

command block executed when

the condition is false.

if {$x < 2*$y} {

 … ;# condition true

} else {

 … ;# condition false

}

Branches with if (and if – else)

The Tcl command(!) if basically does the following:

It hands over its first argument to expr for arithmetic evaluation, and

– depending on the outcome -

it hands over its second argument to eval for (further syntax analysis

and) execution.

A condition is true if the arithmetic evaluation does result in some

value different from zero.

Examples for the two most basic forms follow below:

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 58 / 146

https://www.tcl.tk/man/tcl/TclCmd/if.htm
http://tbfe.de/
http://plc2.com/

= if {$x == $a} {

 … ;# x equal to a

} elseif {$x == $b} {{

 … ;# x equal to b

} elseif {$x == $c} {{

 … ;# x equal to c

} else {

 … ;# neither of above

}

Note that in the output (right) the

arguments received are

enumerated starting from 1.

I.e. from the viewpoint of if it are

the 1st, 4th etc. arguments that

hold the conditions (not the 2nd,

5th etc.).

1:>if<:

2:>$x == $a<:

3:>

 … ;# x equal to a

<:

:4>elseif<:

:5>$x == $b<:

:6>

 … #; x equal to b

<:

:7>elseif<:

:8>$x == $c<:

:9>

 … ;# x equal to c

<:

:10>else<:

:>

 … ;# neither of above

<:

Chaining Branches with if - elseif

Again, to understand what is really behind branch chaining, it makes

sense to look which arguments are really handed over to if:

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 59 / 146

http://tbfe.de/
http://plc2.com/

… exact …

switch -exact -- $x {

 $a {

 … ;# x equal to a

 }

 $b {

 … ;# x equal to b

 }

 $c {

 … ;# x equal to c

 }

 default {

 … ;# neither

 }

}

… or similar to typical file name

pattern matching …

switch -glob -- $f {

 *.bit {

 … ;# bitstream file

 }

 *.vhdl |

 *.VHDL {

 … ;# a vhdl file

 }

 *.[vV] {

 … ;# verilog file

 }

}

Branches with switch

The command switch is an alternative to branch chaining with if.

Comparisons can be made in different ways, e.g. …

… or with regular expressions, for which an example follows in Part 3.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 60 / 146

https://www.tcl.tk/man/tcl/TclCmd/switch.htm
http://tbfe.de/
http://plc2.com/

Loops with while

Repeated execution of some code block with the command while is much

similar to if:

It hands over its first argument repeatedly to expr for arithmetic

evaluation, and – depending on the outcome –

it hands over its second argument to eval for (further syntax analysis

and) execution.

The border case for while is no execution of the code block at all, if the

condition evaluates to false from the start.

The following prints a count-down from 10, pausing for half a second after

each value.

set count 10

while {$count > 0} {

 puts -nonewline $count; flush stdout

 after 500 ;# sleep 0.5 seconds

 incr count -1

}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 61 / 146

http://tbfe.de/
http://plc2.com/

Loops with for

Using the command for instead of while usually improves readability of

loops running through a consecutive range of values, as in this example:*

print 10 x 10 multiplication table

for {set i 1} {$i <= 10} {incr i} {

 for {set j 1} {$j <= 10} {incr j} {

 puts -nonewline [format "%3d " [expr {$i * $j}]]

 # puts + format is much like printf in C

 }

 puts ""

}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Modified to use while the example would look like this:

 # print 10 x 10 multiplication table

set i 1

while {$i <= 10} {

 set j 1

 while {$j <= 10} {

 puts -nonewline [format "%3d " [expr {$i * $j}]]

 incr $

 }

 puts ""

 incr i

}

62 / 146

http://tbfe.de/
http://plc2.com/

Loops with foreach – The Basics

The command foreach specifically targets the processing of Tcl Lists.*

Assuming a list tm of elements which in turn are sub-lists of two elements,

holding a location and a temperature measurements, a detailed report

ending with the average of all measurements may be printed as follows:

set sum 0.0

foreach measurement $tm {

 set loc [lindex $measurement 0]

 set temp [lindex $measurement 1]

 puts "temperature at $loc is $temp"

 set sum [expr {$sum + $temp}]

}

puts "average temperature is [expr {$sum / [llength $tm]}]"

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Most Tcl developers consider foreach more elegant and better readable, compared to this:

 # processing a list with `for`:

set count [llength $tm]

set sum 0.0

for {set i 0} {$i < $count} {incr i} {

 set loc [lindex $tm $i 0]

 set temp [lindex $tm $i 1]

 set sum [expr {$sum + $temp}]

}

puts "average temperature is [expr {$sum / $count}]"

63 / 146

https://www.tcl.tk/man/tcl/TclCmd/foreach.htm
http://tbfe.de/
http://plc2.com/

Loops with foreach – Parallel List Traversal

A different form of foreach can be useful in a similar example, with

locations and temperatures coming from different lists*

set sum 0.0

set count 0

foreach loc $locations temp $temperatures {

 puts "temperature at $loc is $temp"

 set sum [expr {$sum + $temp}]

 incr count

}

puts "average temperature is [expr {$sum / $count}]"

The longer of both lists determines the number of runs through the

loop. After the shorter list is exhausted, its placeholder variable is filled

with an empty string inside the loop body.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Though this data model seems inferior because the association of the different lists via an index only

might be less robust, i.e. will more easily be broken.

64 / 146

https://www.tcl.tk/man/tcl/TclCmd/foreach.htm
http://tbfe.de/
http://plc2.com/

Loops with foreach and Arrays

Loops with foreach may be useful for Tcl Arrays too, as some array sub-

commands return Tcl Lists.

The following example assumes temperature measurements stored in an

array tm, indexed by location:*

foreach location [array names tm] {

 puts "temperature at $location is $tm($location)"

}

Or with yet an alternate loop form:

foreach {temperature location} [array get tm] {

 puts "temperature at $location is $temperature"

}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: No code to calculate the average is provided here – it should be obvious how it would have to be added.

65 / 146

https://www.tcl.tk/man/tcl/TclCmd/foreach.htm
https://www.tcl.tk/man/tcl/TclCmd/foreach.htm
http://tbfe.de/
http://plc2.com/

Early Termination / Reevaluation

By using break loops need not run until a condition becomes false (or a

list is exhausted), but can be prematurely terminated.

By using continue the loop body needs not run to its end but can branch

back to reevaluate the condition (or extract the next list element, if any).

The following example calculates N primes:*

set primes [list 2 3]

for {set next [lindex $primes end]} {[llength $primes] < $N} {} {

 incr next 2

 set found 1

 foreach p $primes {

 if {$next % $p} continue

 set found 0

 break

 }

 if {$found} {

 lappend primes $next

 }

}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Obviously a list of primal numbers is left in primes ehen after the loop terminates.

66 / 146

http://tbfe.de/
http://plc2.com/

Subroutines

Tcl subroutines are

defined with the command proc

taking the subroutine's name as first argument

followed by a formal argument list, and

the subroutine body.

The table associating names with the code to call is then extended by one

more entry, branching to the subroutine body once the subroutine's name

is recognised as command to execute, after syntax analysis is complete.

Formal arguments are the most complex parts (relatively) and will

receive more coverage soon.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 67 / 146

https://www.tcl.tk/man/tcl/TclCmd/proc.htm
http://tbfe.de/
http://plc2.com/

Communicating through Global Variables

Packaging the prime number calculation into as subroutine requires little

effort, if the communication takes place through global variables:

proc calculate_primes {} {

 global N primes

 … ;# as before

}

…

puts -nonewline "how many primes? "; flush stdout; gets stdin N

calculate_primes

puts "first $N primes: $primes"

Instead of naming the global variables in the command global, all

references such variables may be preceded with two colons (::).

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 68 / 146

https://www.tcl.tk/man/tcl/TclCmd/global.htm
http://tbfe.de/
http://plc2.com/

Communicating through Argument- and Return-Values

An improvement over globals, which is easy to achieve, is the use of

a (value) argument for handing over the number of primes to

calculate, and

the return value for transferring back the result.

That way none of the variables inside calculate_primes is visible to the

caller and no variable belonging to the latter is reachable by the callee.

Packaging the prime number calculation into as subroutine requires little

effort, if the communication takes place through global variables:

proc calculate_primes {N} {

 … ;# as before

 return $primes

}

…

puts -nonewline "how many primes? "; flush stdout; gets stdin cnt

puts "first $cnt primes: [calculate_primes $cnt]"

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 69 / 146

http://tbfe.de/
http://plc2.com/

Communicating through Reference Arguments

For results yet another communication style is useful: reference

arguments.

This requires

on the caller's side to hand over a variable name, and

on the callee's side to link that name via the command upvar with a

local alias, effectively "reaching out" of the subroutine to the variable

named by caller.

Accordingly modified the subroutine and its call will now look as follows:

proc calculate_primes {N vname} {

 upvar $vname primes

 … ;# as before

 return [llength $primes]

}

…

puts -nonewline "how many primes? "; flush stdout; gets stdin cnt

calculate_primes $cnt result

puts "first $cnt primes: $result

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 70 / 146

https://www.tcl.tk/man/tcl/TclCmd/upvar.htm
http://tbfe.de/
http://plc2.com/

Arguments with Default Values

The following example once more expects its first argument to be passed

by reference (again applying upvar in cookbook-style), but also

demonstrates a default value in case of its second argument.

In short, fincr extends what incr does to floating point variables:

proc fincr {vname {inc 1}} {

 upvar $vname v

 set v [expr {$v + $inc}]

 return $v

}

Some possible ways to use (and test) fincr are:

set x 1.5

…

incr x ;# increments variable 'x' to 2.5

incr x -0.5 ;# decrements variable 'x' to 2.0

puts [fincr x 0] ;# prints 2.0 on console (variable 'x' unchanged)

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 71 / 146

http://tbfe.de/
http://plc2.com/

Variable Length Argument Lists

Variable length arguments lists have already been used in the helper

function showing the command line after Tcl' syntax analysis has finished.

The essential mechanism is

to specify name args as last in the formal parameter in the definition

of a subroutine,

what will cause to receive all arguments as a list – or those remaining

after some fixed arguments, which must be always specified by the

caller (see below).

The following example combines puts and format within a single function

that behaves like printf in C, hence the name:

proc printf {fmt args} {

 eval puts -nonewline {[format $fmt\n} $args {]}

}

Make sure to understand why the implementation needs to use eval

internally and also why the quoting is necessary.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 72 / 146

http://tbfe.de/
http://plc2.com/

Details on upvar and uplevel

Most Tcl users apply upvar rather in "cookbook-style", like it was shown in

the last example … and that is usually sufficient.*

Some Tcl users also know that there is a related command uplevel,

much similar to eval in that it takes a string, applies Tcl syntax

analysis and executes the resulting command,

but arranges to make this happen as if the caller of the subroutine

had executed that command.

The real use for this is is to implement (new) ways of structuring control

flow (which Tcl users rarely do), and some block of code has to be

executed as if the caller had run it locally.

Do not worry if you have no idea what this page is about, once the time

comes you need it, you will be experienced enough to understand it.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: As a rough sketch what goes on behind the scenes: each subroutine call has a stack frame where locals

are stored. Arguments are locals in most ways sense, e.g. modifications are only applied locally and

storage is space reclaimed once a subroutine ends. Arguments are special in one single aspect: the

caller sets their initial value. The command upvar issued in a function does not exactly create a local

variable but arranges that using a local name will actually access a variable in the caller's stack frame.

73 / 146

https://www.tcl.tk/man/tcl/TclCmd/uplevel.htm
http://tbfe.de/
http://plc2.com/

Error Handling

If a subroutine cannot perform its advertised function, e.g. there may be

bad argument values, it needs to indicate this to the caller.

Many programming languages provide a way to signal certain kinds of

failure in special ways, so does Tcl with

the command error that branches back …

… possibly forcing a number of nested function calls to terminate …

to the next catch command, if any.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 74 / 146

http://tbfe.de/
http://plc2.com/

Example: Using error

Using the command error is as simple as to call it after some failed test,

with an argument describing the problem.

Again the subroutine to calculate primes is used to demonstrate this:*

proc calculate_primes {N} {

 # check if N is numeric

 if {![string is integer $N]} {

 error "argument is not a number: $N"

 }

 … ;# as before

}

Without further precautionary measures, calling calculate_primes with

any non-numeric argument will now abort all further processing.

When the Tcl-Shell is used interactively, the above message will be

produced and the user is returned to the command level.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: The command string used above to test whether N contains digits only will be covered in Part 3.

75 / 146

https://www.tcl.tk/man/tcl/TclCmd/error.htm
http://tbfe.de/
http://plc2.com/

Example: Using catch

The command catch may be used to regain control after the command

error has been executed.

The following example demonstrates how a program could be prompted

repeatedly for interactive input, until the call to calculate_primes

succeeds:

for {set done 0} {!$done} {} {

 puts -nonewline "how many primes? "; flush stdout;

 gets stdin cnt

 if {[catch {calculate_primes $cnt} result]} {

 puts "cannot calculate primes: $result"

 } else {

 puts "first $cnt primes: $result"

 set done 1

 }

}

Another typical use pattern involving catch will be shown in Part 3,

when the handling of errors on opening a file is demonstrated.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 76 / 146

https://www.tcl.tk/man/tcl/TclCmd/catch.htm
http://tbfe.de/
http://plc2.com/

Organising Reuse

As soon as there are some 50 or 100 lines of Tcl code has been written,

there may some reusable components emerge from it.

Basically there are three ways of organising reuse – assuming "Copy &

Paste" of reusable components in the editor shall be avoided:

Write subroutine definitions in a file of their own, and

read this file explicitly with the command source.

Organise the files with reusable subroutine definitions in a way,

so that Tcl's Autoloading will find and read it, whenever necessary.

Organise your library components into Tcl Packages.

All of the above can be subsumed under "advanced use" and in so far is

no required knowledge to start using Tcl.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

* What may be useful to know for Vivado users is that on startup some files – presumably defining

reusable subroutines – are looked up and read, if they exist. Such a file must be named init.tcl and be

placed in either a sub-directory of the installation directory or of the user's home directory. (See UG835

for details.)

77 / 146

https://www.tcl.tk/man/tcl/TclCmd/upvar.htm
https://www.tcl.tk/man/tcl/TclCmd/library.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
http://tbfe.de/
http://plc2.com/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug835-vivado-tcl-commands.pdf

Part 3: The Tcl Standard Library

Syntax versus Library*

Handling Character Strings

Formatting and Scanning

Using Regular Expressions

Date and Time

Working with Files

Command Line and Environment Variable

Running External Programs

Introspection (and Debugging)

Note: The above will also get coverage through practical "live" examples

during the presentation. You are welcome to control with your questions

and proposals for variations which parts will get increased attention which

are only addressed cursory.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: This summarizes a few important points of Part 1 and Part 2 in an extremely condensed form, for all who

choose not to attend to these, maybe because there is already some prior experience with Tcl

programming.

78 / 146

file:///home/martin/Desktop/WeTrain/We-Train-master/PLC2/WeTrain-RuS_Tcl/cmd_line_and_env
http://tbfe.de/
http://plc2.com/

Syntax versus Library

As Tcl's syntax is only minimal, more of the learning effort needs to be

invested on the side of the its standard library, but:

This can be "lazily" and "incrementally":

Only the commands that need to be used need to be learned, and

as such are used promptly, experience builds up quickly.

There are many systematic patterns,

so it is usually easy to "extrapolate" from existing experience,

though there are also irregularities … occasionally.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Most of these are due to backward compatibility and were rather due to, trade-offs, not breaking with

the bulk of existing code. E.g. following the pattern emerging from later practice, all the commands

handling lists should have rather been subcommands of a command list, but as it stands that

command creates lists (only) and other purposes are served with other commands, all starting with an l

(lower case letter ell).

79 / 146

http://tbfe.de/
http://plc2.com/

info commands

Gives the whole list, but …

… hmm, looks a bit unreadable, all

these long lines without visual

breaks …

… better: with line breaks …

join [info commands] \n

… even better: sorted!

join [lsort [info commands]] \n

Learning Interactively

Nearly everything command in Tcl can be tried interactively

and often as "one-liner" (i.e. without framing it into a larger program)

so in one go with reading the manual any obscurities may be clarified.

A similar approach is used for demonstrating some important library

functions during this part of the presentation.

Please feel free to interrupt the speaker to control the direction into which

the live examples given evolve.

Let's start with looking up which standard commands are available:

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 80 / 146

http://tbfe.de/
http://plc2.com/

Handling Character Strings

The command string has a lot of subcommands. Some of the more

frequently used ones are:

string length … – return number of characters*

string index … pos – return single character at pos

string range … from to – return sub-string from … to

(inclusive range specification, so C++ STL users pay attention!)

string repeat … count – return count concatenations

string first what … – return position where what first matches

string last what … – return position where what last matches

string is class … – return if characters in strings are of class

string compare … … – attention three-way compare (== 0 is equal)

string equal … … – compare exactly for equality (!= 0 is equal)

string match pattern … – compare with pattern

(according to file name pattern matching rules)

Many more are useful, like toupper, tolower, trim, trimleft trimright, …

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Be aware of character set issues – with this and all other string handling commands. As Tcl internally

uses 16 bit characters, Unicode with its whole Basic Multilingual Plane (BMP) will work flawlessly, but

surrogate pairs may not, and – depending on the purpose for which the string is used – also combining

characters might need special attention.

81 / 146

https://www.tcl.tk/man/tcl/TclCmd/string.htm
http://tbfe.de/
http://plc2.com/
http://en.wikipedia.org/wiki/Plane_%28Unicode%29#Basic_Multilingual_Plane

Formatting and Scanning

The commands format and scan provide capabilities close to what sprintf

and sscanf offer in C/C++.*

The commands in Tcl work with strings of dynamic length.

C and C++ developers therefore

may simply apply their existing knowledge …

… using Tcl syntax,

but without any worries about buffer overflows.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Which is basically the same for strings as in C fprintf and fscanf provide for files, or printf and scanf for

standard output and standar input.

82 / 146

https://www.tcl.tk/man/tcl/TclCmd/format.htm
https://www.tcl.tk/man/tcl/TclCmd/scan.htm
http://tbfe.de/
http://plc2.com/

Formatting Example

Most often format is used if some output should be arranged in columns,

like in the following table of Sine, Cosine, and Tangent functions:

set PI [expr {2*acos(0.0)}]

for {set angle 0} {$angle <= 360} {incr angle 15} {

 set line [format "%3d" $angle]

 set radians [expr {$PI*$angle/180.0}]

 foreach func [list sin cos tan] {

 set result [expr ${func}($radians)]

 if {abs($result) > 1e7} {

 set result "~inf"

 } else {

 set result [format "%.3f" $result]

 }

 append line [format " %11s" $result]

 }

 puts $line

}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 83 / 146

http://tbfe.de/
http://plc2.com/

Scanning Example

Often scan is a useful helper to convert numeric strings into their value.*

The following reads two floating point numbers and prints the diagonal, if

both were sides of a rectangle:

while {[gets stdin line] > 0} {

 set line [string trim $line]\n

 if {[scan $line "%f%f%\[\n]" x y dummy] != 3} {

 puts "not two float values: $line"

 continue

 }

 puts [format "diagonal of rectangle with sides a=%g and b=%g\

 is c=%g" $x $y [expr {sqrt($x*$x + $y*$y)}]]

}

Note that the example takes special care to recognize excess input after

the second float, which would be silently accepted that way:

 if {[scan $line "%f%f" x y] != 2} …

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Despite the fact that this usually works automatically, there are occasions where more control is

desirable, especially if "bad input" should be sorted out early.

84 / 146

http://tbfe.de/
http://plc2.com/

Reading and Writing Byte Values

Programming with Tcl close to the hardware sometimes requires to do

numerical operation on byte values.

Here scan and format are useful too, as converting with the %c-specifier

will translate between character values and (internal) integral numbers.

For some input stream – channel $uart below, assumed to be in

translation mode binary(!) – the following reads single bytes*, then

considers the upper Nibble as sequence number,

the lower as four associated bit values, and

assembles an array of sixteen elements,

with each value being a list of four 0s or 1s

format [read $uart 1] %c byte

set index [expr {($byte >> 4) & 0x0F}]

set result($byte) [list]

for {set i 0} {$i < 4} {incr i} {

 lappend result($byte) [expr {($byte >> i) & 0x1}]

}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: The command read is covered in a later section.

85 / 146

http://en.wikipedia.org/wiki/Nibble
http://tbfe.de/
http://plc2.com/

Using Regular Expressions

Regular expressions offer elegant and powerful ways for processing

character strings.

The main usage areas are:

Very flexible string comparisons

Extracting parts of a string

Systematically modifying strings*

The first two are handled with the command regexp, the last with regsub.

For most use cases it makes sense to enclose a regular expression in

curly braces (Tcl full quoting).

The above avoids that any contained character gets a special handling in

the Tcl Syntax Analysis and is eventually substituted by something else.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: In principle, as Tcl strings can have any content, regular expressions might also be used to manipulate

binary data, though quoting must then be considered very carefully (inside and outside the regular

expression) and specifying non-printable characters correctly comes with its own set of pitfalls, which

even depends on the Tcl version used.

86 / 146

https://www.tcl.tk/man/tcl/TclCmd/regexp.htm
https://www.tcl.tk/man/tcl/TclCmd/regsub.htm
http://tbfe.de/
http://plc2.com/

Regular Expressions - The Basics

Basically there are

Atoms – representing an inseparable unit, like

a specific single character, or

a character from a given selection,

Operators – binary (postfix) and unary (infix),

Precedence Rules, and

Round Parentheses to alter precedence.

On the next slides follow a very brief (far from exhaustive) introduction to

Tcl's Regular Expression Syntax and some basic usage examples.

For a detailed description of Tcl's regular expression syntax see the

manual entry re_syntax.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 87 / 146

https://www.tcl.tk/man/tcl/TclCmd/re_syntax.htm
http://tbfe.de/
http://plc2.com/

Regular Expression Atoms

Most characters in regular expression are used literally, i.e. they stand as

atoms for themselves. Notable exceptions are:

. (dot) – represents any character

[…] – represents any character listed inside (denoted here as …)

[^…] – represents any character not listed inside (denoted here as …)

Furthermore a backslash allows to introduce the character following it as

atom, and there are also escape sequences for non-printing characters.*

\. – represents a single dot;

\[and \] – represent opening and closing square brackets;

\?, *, \+, and \| – represent question mark, asterisk, plus, and

vertical bar (which otherwise all are operators – see next page);

\\ – represents a backslash.

\a, \b, \f, \n, \r, \t, \v, (and some more) – represent non-printing

characters (like in C/C++).

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Be sure to understand that when it comes to regular expressions, there are actually two machineries in

Tcl at work, that could cause to substitute things like \n or \t etc. by something else.

88 / 146

http://tbfe.de/
http://plc2.com/

[!]

As a solution a way to specify

Character Classes is provided …

[:digit:] – decimal digits

[:xdigit:] – hex digits

[:alpha:] – letters

[:space:] – white space

… (etc.) …

… including Shorthand Escapes:

\d – (decimal) digits

\s - white space

… (etc., also inverted) …

\D – anything but digits

\S - anything but white space

… (etc.) …

Regular Expression Character Classes

A frequent necessity in a regular expression is to specify

any digit – [0123456789] or [0-9],

any hex digit – [0-9a-fA-F], or

any alphanumeric character [0-9a-zA-Z],

… (etc.) …

A range in square brackets, like a-z, means: Any Code Point in

the underlying character set, from a to z inclusive.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: And therefore some examples above (especially a range like [a-z]) might not describe what is intended,

which might also be the case with character classes with respect to localization.

89 / 146

https://www.tcl.tk/man/tcl/TclCmd/re_syntax.htm#M31
https://www.tcl.tk/man/tcl/TclCmd/re_syntax.htm#M65
http://en.wikipedia.org/wiki/Code_point
http://tbfe.de/
http://plc2.com/

Postfix operators control

repetition of atoms (or sub-

expression) on their left side:

? means 0…1 (optional)

* means 0…∞ (any length)

+ means 1…∞ (at least one)

{m,n} means m…n

{m} means m exactly

{m,} means m at least

Infix operators connect atoms

(or sub-expressions) on their left

and right side:

Adjacency:*

first left then right hand side

must occur.

Separation by | (bar):

either left or right hand side

must occur.

Regular Expression Operators

Regular expression operators are listed below in order of decreasing

precedence (left box higher, right box lower, inside boxes top to down):

+

Parentheses may be used to modify precedence.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Two adjacent sub-expressions may be read as joined with an "invisible operator" in between, i.e. ab as if

it were a·b, with · has a precedence lower than all postfix operators and higher than the vertical bar.

90 / 146

http://tbfe.de/
http://plc2.com/

Regular Expression Simple Examples

Following are some simple examples for regular expressions.*

Regular Expression … … and to what it matches

<[:alpha:]*> sequence of letters in angle brackets

<.*> … as before, not limited to letters

<[^<>]*> … as before, excluding angle brackets

\d+ non-empty digit-sequence (somewhere)

^\d+$ … as before, but nothing else around it

-?\d+ integral number with an optional sign

[-+]?\d+ … as before but allowing + or -

\d+\.?\d* signed integral or floating point number

\d+(\.\d*)? … as before, in a slightly different way

\d+(\.\d*)?(e[-+]?\d+)? … as before, with optional exponent

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: For subset of examples checking whether some string holds an integral or a floating number, note that

this can be also achieved with string is integer or string is double, and in the latter case is much

more complete with respect to what is recognised as valid float.

91 / 146

http://tbfe.de/
http://plc2.com/
https://www.tcl.tk/man/tcl/TclCmd/string.htm#M21
https://www.tcl.tk/man/tcl/TclCmd/string.htm#M17

Regular Expression Advanced Examples

As an advanced example consider a regular expression describing the

currency formatting as usual in Germany:

set CURRENCY_FORMAT {^\d{1,3}([.]\d{3})*,\d{2}$}

from the start-----^||||||| |||||||| ||||||||

one to three digits-^^^^^^^ |||||||| ||||||||

more groups of three digits-^^^^^^^^ ||||||||

repeated any number of times --------^|||||||

followed by comma and two more digits-^^^^^^|

and up to the end nothing after it----------^

As some easy variations consider an optional decimal part (1) or a

mandatory decimal part that may be replaced by a dash (2):

set CURRENCY_FORMAT {^\d{1,3}([.]\d{3})*(,\d{2}$)?} ;# 1

set CURRENCY_FORMAT {^\d{1,3}([.]\d{3})*,(\d{2}|-)} ;# 2

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 92 / 146

http://tbfe.de/
http://plc2.com/

Parsing according to C/C++ …

switch -regex -- $value {

{^0[1-7][0-7]*$} {

 … ;# octal

}

{^-?[0-9]+$} {

 … ;# (signed) decimal

}

{^0[xX][0-9a-fA-F]+$} {

 … ;# hexadecimal

}

{^0b[01]+$} {

 … ;# binary (since C++14)

}

… or more like VHDL …

switch -regex -- $value {

{^X"[:xdigit:]+"$}

 … ;# binary (since C++14)

}

{^"[01]+"$}

 … ;# binary (since C++14)

}

… (Verilog-ers will get their

example on the next page ☺).

Using Regular Expressions with switch

Regular expressions can also be used for comparisons with switch. The

following assumes value may allow for various number formats (from

binary to hexadecimal).*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: The character classes specified as range also assume a machine character set with sequentially

adjacent code points for 0 to 9 – which is guaranteed by the C/C++ ISO standard – and a to f and A to F –

which holds for original (7-bit) ASCII, Extended (8-bit) ASCII, all ISO 8859 variants, EBCDIC and Unicode.

93 / 146

https://www.tcl.tk/man/tcl/TclCmd/switch.htm
http://tbfe.de/
http://plc2.com/

Parsing with Regular Expressions

A regular expression also provides an easy way to access substrings that

matched some part of it.

The following (more or less) recognizes binary literals* from Verilog:

if {[regexp {(\d+)?([sS])?'[bB]([10zZ?]+)} $value\

 match size signed bits]} {

 … ;# matching parts in

 … ;# - match : all (what matched)

 … ;# - size : integral value or empty

 … ;# - signed: may be 's', 'S', or empty

 … ;# - bits : non-empty sequence of '0', '1', 'z', 'Z', or '?'

} else {

 … ;# did not match (variables not set)

}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: A more involved example which allows for other bases is given, but without further explanations:

 # first come the parts for the various number bases, they will then be connected via '|'

set based_values [list {[bB][01zZ?_]+} {[oO][0-7zZ?_]+} {[dD][0-9_]+} {[xX][0-9a-fA-FzZ?_]}]

if {[regexp "(\\d+)?(\[sS])?'([join $based_values |])" $value match size signed base_val]} {

 set base [string index $base_val 0]

 set val [string range $base_val 1 end]

 …

}

94 / 146

http://en.wikipedia.org/wiki/Verilog
http://tbfe.de/
http://plc2.com/

Date and Time

The command clock has a large number of subcommands, providing

many operations with date and time.

These are the ones most often used:

Current time as time-stamp in (milli/micro) seconds since epoch:

clock seconds

clock milliseconds

clock microseconds

Convert between time-stamp in seconds and human readable

representation:

clock format

clock scan

Calculations based on time-stamps and durations:

clock add

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 95 / 146

https://www.tcl.tk/man/tcl/TclCmd/clock.htm
http://tbfe.de/
http://plc2.com/

Working with Files

Working with files basically falls into three main categories:

Working with Directories

Operations with Files in Whole

Accessing the Content of Files

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 96 / 146

http://tbfe.de/
http://plc2.com/

[!]

Working with Directories

The commands dealing with directories and directory content are:

pwd – return the absolute path name of the current working directory;*

cd – change the current working directory according to the path name

specified as argument or to the user's home directory, if no argument

is given;

glob – return list of path names in given or current directory (see

examples following).

As it is a pre-process resource, be careful when changing the

current working directory, as determines how relative file path

names are interpreted for all parts of the running program.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: This is implemented as built-in command with the same name as the command a traditional U*ix system

provided for that purpose. Therefore pwd in Tcl not only works at the interactive interpreter level (where

any unknown command is tried as operating system command anyway).

97 / 146

https://www.tcl.tk/man/tcl/TclCmd/pwd.htm
https://www.tcl.tk/man/tcl/TclCmd/cd.htm
https://www.tcl.tk/man/tcl/TclCmd/glob.htm
http://tbfe.de/
http://plc2.com/

Example for pwd and cd

The commands pwd and cd may be used in concert to remember and

restore the current working directory.

The base technique is:

set old [pwd] ;# save current working directory

cd … ;# change working directory

… ;# do work

cd $old ;# restore old working directory

Note that the above is not very secure against failures.

Especially it will create problems if one of the command running while the

directory is changed causes an error which is caught without restoring the

working directory, the change will unexpectedly persist.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: The wrapping required to make saving and restoring secure against intermediate failure is not hard to

write but also not trivial, so it is not shown here. If the feature to run a portion of a Tcl program with a

different working directory is required more often, it will probably be best to implement a new control

structure for that purpose with the help of uplevel.

98 / 146

http://tbfe.de/
http://plc2.com/

All files matching *:

… [glob *] …

All files in directory /tmp:

… [glob /tmp/*] …

Example for glob

The basic use of glob is trivial and easy, as it returns a list of path names

for the current or a given directory.

There are many useful options, some are shown in the examples below:*

… [glob -hidden *] … ;# include hidden file

… [glob .* *] … ;# as before on Unix or Linux

… [glob -- -*] ;# files with names starting with '-'

… [glob -types d *] ;# only (sub-) directories

Another important option is -nocomplain: when it is not specified it an

empty result (list) will be considered as error.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: With respect to the example on "hidden" files it probably need to be understood that for U*ix

traditionally these are all files that have a name beginning with dot.

99 / 146

http://tbfe.de/
http://plc2.com/

Operations Files in Whole

The command file has a number of sub-commands for all the operations

that are possible with a file in whole.

The subcommands are numerous and fall into the following categories:

getting/changing file attributes* (properties)

file atime, file attributes, file exists, file isdirectory,

file isfile, file lstat, file mtime, file owned, file readable,

file readlink, file size, file stat, file type, file writeable

copying, renaming, etc.

file copy, file delete, file link, file mkdir, file rename,

file tempfile, file volumes

operations on path names

file dirname, file extension, file join, file nativename,

file normalize, file pathtype, file rootname, file separator,

file split

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: While in most cases results are delivered as return values lstat and stat expect the name of an array as

argument and store the result at designated indices of that array.

100 / 146

https://www.tcl.tk/man/tcl/TclCmd/file.htm
http://tbfe.de/
http://plc2.com/

Accessing the Content of Files

Accessing the content of files from Tcl is modelled after C:

open returns a file handle which usually is saved in a variable,

as it is the entrance ticket for other operations with the file,

like reading or writing (read, gets and `puts),

finding or setting the current position (tell and seek), and

miscellaneous operations like testing for EOF (eof)

and finally handed over to close to release the resource associated

with the file handle.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 101 / 146

http://tbfe.de/
http://plc2.com/

Opening Files

The command open has two arguments:

the file name and

the open mode.

As usual, if the file name is a relative path name it is interpreted from the

current working directory.

An unusual feature is that a path name beginning with a vertical ar (|)

is considered to be external command. Depending on the open mode

its input or output is then available via the file handle returned.*

Open modes are specified

either as for fopen in C (r, w, rw, a, …)

or in Posix style (RDONLY, WRONLY, RWDR, APPEND, …)

Note that there are also some options effecting serial ports, but usually

these are configure by fconfigure, which has still more options.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: This can be seen as a way of starting a process asynchronously and will be covered later

102 / 146

https://www.tcl.tk/man/tcl/TclCmd/open.htm
http://tbfe.de/
http://plc2.com/

Handling Errors when Opening Files

Errors on opening files with open are usually caught (and adequately

handled) in an idiomatic style.

The following opens a file specified by variable pathname for reading:

if {[catch { open $pathname r } result]} {

 … ;# handle error (reason is in result)

} else {

 … ;# work with file (handle is in result)

 close $result ;# <--- essential to avoid resource leaks

}

Note that closing a file – even if opened read-only – is usually necessary

to avoid resource leaks.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: The problem may not show if only some few files are left in an opened state. But if a fragment like the

above is run over and over again and does not close the file it opened, at some point the process max

reach its limit of open files, and from that on all attempts to open a file will cause an error On operating

systems as used in the 1980s, this limit was about 20 or 50; recent OS may have raised to to several

hundred, but on most any OS there still is such a limit.

103 / 146

http://tbfe.de/
http://plc2.com/

[!]

Deferred Handling of Errors when Opening Files

If an error from open cannot be sensibly handled locally, it is often easier

to leave error to the caller of a function.

Return content of text file as Tcl list (each line one element):*

proc get_file_lines {name} {

 set handle [open $name r]

 set content [read -nonewline $handle]

 close $handle

 return [split $content \n]

}

…

if {[catch { get_file_lines $pathname } file_lines]} {

 … ;# problem opening (or reading?) the file

} else {

 … ;# OK (lines as list elements in file_lines now)

}

If the above could not fail on open but on read a resource leak

may occur as the opened file will not be closed.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: A counterpart subroutine put_file_lines is shown later.

104 / 146

http://tbfe.de/
http://plc2.com/

Intermezzo: What Exactly Does catch?

The last example may serve as reminder of an some unusual aspect in

the use of the command catch that needs to be used for regaining control

after an error:

The return value of that command holds the information, whether

the command given as first argument

lead to an error – then catch returns "true" as condition for if;

everything went ok – then catch returs "false" and the else part

gets control.

Depending on the former, the second argument of catch will

either hold the message returned from error,

or the result of the command executed (last).

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 105 / 146

https://www.tcl.tk/man/tcl/TclCmd/catch.htm
https://www.tcl.tk/man/tcl/TclCmd/error.htm
http://tbfe.de/
http://plc2.com/

Special File Handling Options

The command fconfigure provides various sub-commands to control

many aspects of files.

The following list is by no means exhaustive:

how buffering is handled (none, by line, larger block, …),

translation modes (e.g. newline → carriage return + newline or vice

versa),

if a read will block as long as no data is available,*

Note that using the non-blocking modes for reading data will often lead

to busy waiting.

Asynchronous designs with read operations in call-backs, registered with

the command fileevent, are usually a better option, though not easily

available in Vivado.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: This is mainly used for "device files" representing to a serial line interface, TCP/IP-sockets, or U*ix

pipelines. In some cases it may also make sense for console input.

106 / 146

https://www.tcl.tk/man/tcl/TclCmd/fconfigure.htm
https://www.tcl.tk/man/tcl/TclCmd/fileevent.htm
http://tbfe.de/
http://plc2.com/

Configuring Serial Devices

The command fconfigure also provides sub-commands to control the

operation of serial hardware interfaces.

Again, the following is by no means exhaustive:

set baud rate, bit-frame, parity …

… behaviour of control lines …

… flow control …

In the standard Tcl manual pages the details are not documented with

fconfigure but in section Serial Communications of open.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 107 / 146

https://www.tcl.tk/man/tcl/TclCmd/open.htm#M22
http://tbfe.de/
http://plc2.com/

Reading Whole Files or Fixed Size Portions

The command read either reads a number of given characters from a file,

or a whole file.

The following fragment reads single characters with waiting (assuming a

valid file-handle fh):

while {![eof $fh]}

 set ch [read $fh 1] ;# <-- will block if no data is available

 … ;# process ch

}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 108 / 146

https://www.tcl.tk/man/tcl/TclCmd/read.htm
http://tbfe.de/
http://plc2.com/

[!]

Reading Characters Without Waiting

As already mentioned, a file handle may be configured not to wait for

data being available on read:

…

fconfigure $fh -blocking 0

while {![eof $fh]}

 set ch [read $fh 1] ;# <-- will not block if no data, so ...

 if {[string length ch] == 0} { ;# ... we need to check ...

 … ;# ... and can do something useful here (REALLY useful)

 } else {

 … ;# process ch

 }

}

…

Really useful means exactly that: REALLY USEFUL. Simply

doing nothing when no data is available will lead to busy

waiting and eats-up precious CPU time while waiting.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: The very least were to sleep a small amount of time without causing CPU load. This can be achieved

with the command after, followed by a numeric argument that specifies the time to sleep in

milliseconds, but this always requires trade-off between lowering the CPU load and sub-optimal latency.

109 / 146

http://tbfe.de/
http://plc2.com/
https://www.tcl.tk/man/tcl/TclCmd/after.htm

Reading Line By Line

The command gets reads single lines from a file.

In detail its behaviour depends on the arguments used in the call:

With only a file-handle as argument it returns the next line read,

With a file-handle and a variable name as argument it

returns the number of characters read, and

leaves the line content in the named variable.

Depending on the translation mode configured for the file end-of-line

conventions will be handled transparently.

In the line read (and in the count returned by the second form) there is

no end-of-line character contained.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 110 / 146

https://www.tcl.tk/man/tcl/TclCmd/gets.htm
http://tbfe.de/
http://plc2.com/

set result [list]

while {[gets $fh line] >= 0} {

 lappend result $line

}

set result [list]

while {![eof $fh]} {

 lappend result [gets $fh]

}

The loop is exited after the last

line (as it is probably intended).

The loop is not exited after the

last line, as reading it has not

(yet) set the end-of-file state –

this will only happen with the

next call to gets.*

Examples Reading Line By Line

The following two examples append each line read from a file as new

element to a list (assuming a valid file-handle fh):

Though both ways may look equivalent, they do actually are different for

files in which the last line is terminated with end-of-line characters (as is

usually the case).

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: But that call then returns an empty string, hence the result list has another (empty) entry at its end.

111 / 146

http://tbfe.de/
http://plc2.com/

Writing to Files

The command puts has been used often in this presentation, but always

with only one argument (and sometimes the option -nonewline too).

If used with two arguments, the first must be a file handle, typically

obtained from a call to open.

The following is the counterpart to the example subroutine

get_file_lines:*

proc put_file_lines {name content} {

 set handle [open $name w]

 puts -nonewline $handle [join $content \n]

 close $handle

}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Why does the call to puts require the use of the -nonewline option?

112 / 146

https://www.tcl.tk/man/tcl/TclCmd/puts.htm
http://tbfe.de/
http://plc2.com/

More Operations with Open Files

The commands

eof,

seek, and

tell

support more operations with files via file handles.*

Live examples will be given if this topic is of special interest.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: As are usually obtained from open.

113 / 146

https://www.tcl.tk/man/tcl/TclCmd/eof.htm
https://www.tcl.tk/man/tcl/TclCmd/seek.htm
https://www.tcl.tk/man/tcl/TclCmd/tell.htm
http://tbfe.de/
http://plc2.com/
https://www.tcl.tk/man/tcl/TclCmd/open.htm

[!]

Flushing and (finally) Closing Files

The command close is required to release any resources connected to a

file handle.

When a file is close-d, also the last buffered output is flushed.

Hence this command may return an error for files that are

written.

Also note that flush-ing the buffer only happens from the perspective of

the Tcl application. On modern operating systems (and even in the

hardware of the storage system) there are usually additional levels of

buffering.

Data may not have arrived on a reliable persistent storage media, only

because the file to which is written has been flush-ed or close-d via its

file handle.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 114 / 146

https://www.tcl.tk/man/tcl/TclCmd/close.htm
https://www.tcl.tk/man/tcl/TclCmd/close.htm
http://tbfe.de/
http://plc2.com/

Command Line / Environment Variables

The calling context of a script may be accessed via Tcl Global Variables.*

argv are the command line arguments (without the name of the

command itself) as list;

argc is the same as llength $argv;

argv0 holds the path name of the script executed (not the interpreter,

i.e. not tclsh or wish);

env is an array holding the environment variables (as can usually

expected plus what has been individually set via export in the shell).

By using global variables with to leading semicolons, e.g. ::env instead

of env, the above also works as part of a subroutine, without introducing

the variable name via the command global.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: There are global variables for many more purposes, like checking for the version of Tcl (tcl_version) or

Tk (tk_version), platform specific properties like the file path name separator (/ on U*ix and \ on

Windows) or byte order etc., and much, much more.

115 / 146

https://www.tcl.tk/man/tcl/TclCmd/tclvars.htm
http://tbfe.de/
http://plc2.com/

[!]

Example for Accessing Command Line Arguments

The following prints a message on standard error stream that includes the

program name and terminates the Tcl interpreter with a given return

status:

proc die {message {exitstatus 127}} {

 global argv0

 puts stderr "$::argv0 [FATAL]: $message"

 exit $exitstatus

}

A call to exit will usually terminate a Tcl script at any point,

hence resources not cleaned up automatically at the end

of the process may leak …

… but an application may chose to redefine the command exit and do

something different.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Especially applications that may run arbitrary, user supplied Tcl scripts – like Vivado – will typically chose

to ignore exit or at least do all necessary cleanup and may also save any data important for to be

available for recovery on a restart.

116 / 146

http://tbfe.de/
http://plc2.com/

Example for Accessing Environment Variables

The following lists all the environment variables an their value in sort

order:

foreach v [lsort [array names ::env]] {

 puts "$v=$::env($v)

}

Or only those with a XILINX_-prefix:

foreach v [lsort [array names ::env XILINX_*]] {

 puts "$v=$::env($v)

}

After modifying or adding to the global array env, the result is visible as

(new) environment for a child processes, easily demonstrated as follows:

set env(MINE) whatever

exec env | grep MINE

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 117 / 146

http://tbfe.de/
http://plc2.com/

Running External Programs

The command exec is the general interface to run separate processes.

Via a mix of Tcl and (U*ix) Shell syntax it provides many variations as

exemplified below (including a meaningful mix thereof):

run the process synchronously;

run the process asynchronously;

run several processes pipelined;

return standard output after completion …

… optionally including standard error output

… and/or turn abnormal termination into a Tcl error;

connect to the Tcl interpreter via file handles or sockets.*

Besides its main purpose to open classic files, also the command open

provides easy ways to run a separate process while either

supplying its standard input or

receiving its standard output.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: This makes more sense for asynchronously run processes and will often necessitate to receive data sent

from the external program to the interpreter in callbacks registered via fileevent.

118 / 146

https://www.tcl.tk/man/tcl/TclCmd/exec.htm
http://tbfe.de/
http://plc2.com/
https://www.tcl.tk/man/tcl/TclCmd/fileevent.htm

Running Programs Synchronously

The exec command may wait on the external program to end, i.e. run it

synchronously.

A typical fragment may look like this:

set xprog … ;# program to execute (with arguments)

set result [exec $xprog] ;# execute and receive stdout and stderr

The command exec may also be used to start a pipeline of more than

one program.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 119 / 146

http://tbfe.de/
http://plc2.com/

Running Programs in Background

The exec command may start the external program in the background, i.e.

run it asynchronously (aka. as demon).

A typical fragment may look like this:

set xprog … ;# program to execute (with arguments)

exec $xprog & ;# execute (ignoring the result)

The above is used if it does not matter when and how the background

process ended.

The return value of an exec command like above, which is the PID of the

process, may also be saved for later use:

set pid [exec $xprog &]

If the command exec is used to start a pipeline of more than one program

in the background, the return value is a list of all process ids.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 120 / 146

http://en.wikipedia.org/wiki/Process_identifier
http://tbfe.de/
http://plc2.com/

… test whether it is still running …

if {[catch {

 exec kill -0 $pid

 }]} {

 … ;# process terminated

} else {

 … ;# process still running

}

… or to forcefully terminate it.

first ask politely ...

exec kill -TERM $pid

... then wait ...

after 5000

... and no more mercy now:

exec kill -KILL $pif

Controlling Programs in Background

A saved PID will typically be used to control the program running in the

background in some way, most often to …

Linux and many other modern U*ix systems allow for finer grained

interventions via the /proc file system.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: At any time the entries within it represent a live snapshot of all currently running processes as PID-

named sub-directories. Their entries turn allow to obtain information on and get control over these

processes. For details see: https://www.kernel.org/doc/Documentation/filesystems/proc.txt

121 / 146

http://tbfe.de/
http://plc2.com/
https://www.kernel.org/doc/Documentation/filesystems/proc.txt

Sending Input to a Program

The open command may also be used to start a program as an external

process while asynchronously supplying its standard input via a file

handle.

A typical fragment may look like this:

set xprog … ;# program to execute (with arguments)

set handle [open |$xprog w]

while { … produce more data for xprog to process … } {

 puts $handle … ;# whatever

}

close $handle ;# will wait for xprog to terminate

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 122 / 146

https://www.tcl.tk/man/tcl/TclCmd/open.htm
http://tbfe.de/
http://plc2.com/

… either lines of text …

set xprog …

set fh [open |$xprog r]

while {[gets $fh line] >= 0} {

 … ;# process another line

}

close $fh

… or arbitrary (binary) data.

set xprog …

fconfigure\

 [set fh [open |$xprog r]]\

 -translation binary

set data [read $fh]

close $fh

… ;# process all binary data

Receiving Output from a Program

The open command may also be used to start a program as an external

process while asynchronously reading its standard output via the file

handle returned.

A typical fragment may look like one of the following two fragments …

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 123 / 146

https://www.tcl.tk/man/tcl/TclCmd/open.htm
http://tbfe.de/
http://plc2.com/

Introspection (and Debugging)

The main interfaces required for introspection and debugging are

available via the Tcl commands

info,

trace, and

rename

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 124 / 146

http://tbfe.de/
http://plc2.com/

Obtaining Information (on Most Everything)

By various sub-commands the command info provides information many

internals of the Tcl interpreter.

The following is an overview only and by no means exhaustive:

info vars – returns a list of all variables (by default of the current

scope, but as an optional pattern may follow, by using info vars ::*

all global variables may be obtained too);

info exists varname – returns true if a variable varname exists.

info commands – returns a list of all commands currently known to the

interpreter (includes but is usually much more than the next);

info procs – returns a list of all currently known Tcl subroutines

info args procname – returns a list of arguments (including defaults)

as expected from subroutine procname;

info body procname – returns the body (implementation) of subroutine

procname;

info functions – returns a list of all mathematical functions currently

supported by expr.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: It is easily possible to extend the support for mathematical functions, for details see section Math

Functions in the manual page of expr.

125 / 146

https://www.tcl.tk/man/tcl/TclCmd/info.htm
http://tbfe.de/
http://plc2.com/
https://www.tcl.tk/man/tcl/TclCmd/expr.htm#M22

Tracing Variable Access and Subroutine Execution

The various sub-commands of the command trace provide options to get

call-backs when

variables are accessed (read, written, or unset), or

subroutines executed (entry, exit, or line-by-line trace).

Live examples will be given if this topic is of special interest.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 126 / 146

https://www.tcl.tk/man/tcl/TclCmd/trace.htm
http://tbfe.de/
http://plc2.com/

Renaming and Removing Commands

The command rename allows to

change the name of an existing subroutine, or

completely remove it (by renaming it to the empty string "").

Live examples will be given if this topic is of special interest.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 127 / 146

https://www.tcl.tk/man/tcl/TclCmd/rename.htm
http://tbfe.de/
http://plc2.com/

Tcl in Vivado

Understanding Design Objects

Quoting Correctly Applied

Special Square-Bracket Rules

Design Object Name Matching

More Uses of Tcl

Problematic Areas

Tcl beyond Vivado

Calling C/C++-Modules

TCP/IP-Communication

GUI-Programming

(and more - if time allows)

Part 4: Using Tcl in Vivado and Beyond

The (relative) weight of the major sections is controlled by attendees and

may vary between "50:50" or "80:20", with the 80% on either side.

There will be a short poll now so that time can be appropriately allotted.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 128 / 146

http://tbfe.de/
http://plc2.com/

Tcl in Vivado (Summarising)

Tcl is integrated in Vivado as its Tool Command Language.

In general Vivado's Tcl interpreter is full-featured* but in some few special-

purpose areas it has restrictions.

During start-up Vivado looks at various standard places to find and

eventually read and execute (= source) files with Tcl commands.

These files are a good place for a collection of private subroutines

needed frequently in a Tcl-based design flow.

If the collection grows, consider to split it into logical groups, put each

group into a file of its own and source these from inside the files

Vivado which is automatically reads at start-up.

If your subroutine library grows ven more, consider to make use of

Autoloading.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Currently the tcl_version used in Vivado is 8.5, i.e. just one minor release step from the current

mainstream version of Tcl, which is 8.6.

129 / 146

http://tbfe.de/
http://plc2.com/

Understanding Design Objects

At its core Vivado holds a Design Model in a set of interconnected Design-

Objects.*

These objects are grouped into classes with a set of properties, which can

be queried and modified in various ways with commands added to Tcl by

Vivado for that purpose.

Design Objects are a new type from the viewpoint of Tcl.

This type is the Vivado specific addition to Tcl's (internal) standard types

like integral and floating numbers or character strings.

References to design objects are handled transparently by Tcl and need

no special consideration when held in a Tcl variable or list.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: This is mainly derived from the documentation and should be rather taken as conceptual description, not

as internal details of the actual implementation.

130 / 146

http://tbfe.de/
http://plc2.com/

Design Objects in Lists

There are many commands in Vivado that return design objects, often as

list of design objects.*

A design object (reference) can be

added to a list from a variable or another list in which was held, and

taken from a list in which it is held and assigned to variable.

Handing around a design object reference that way will keep the object

itself fully intact, with all its properties.

The only thing that is made sure is that lists of design object

(references) always hold objects of the same class.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: This is called an "object container" in the Vivado documentation and actually a new Tcl type too. But

most of the commands a Tcl developer expects to use for lists are available for object containers and

hence it can be said they have the "look & feel" of a Tcl list.

131 / 146

http://tbfe.de/
http://plc2.com/

Converting to and from Design Objects

If on occasion a Tcl (built-in) command actually needs a character string,

the design objects

will not be completely encoded into pure text form* (somehow),

instead only the NAME property of the design object will be used.

Vice versa the conversion from a name to a design object (reference)

requires the use of a one of Vivado's get_ commands.

Of course, design objects may be transformed into a textual description

by means of report_property -all …, though the output then is primarily

targeted to a human reader, not for direct further processing.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: This is what makes design objects different from the built-in types: the latter are always serializable to a

pure text form, hence may be stored externally and retrieved with their original content. For design

objects that would make little sense due to the many interconnections they may have with other

objects, which in turn would then have to be serialised, or the originally serialises object were not of

much use anymore.

132 / 146

http://tbfe.de/
http://plc2.com/

Quoting Correctly Applied

In VHDL identifiers may be contain and surrounded with back-slashes,

e.g.:

\abc\def uvw\xyz\

This, of course, needs some quoting in Tcl, but full quoting

{\abc\def uvw\xyz\}

will fail in that particular case, due to the trailing back-slash.*

.N[Therefore the recommended solution is this:

"\\abc\\def uvw\\xyz\\"

Use double quotes and write all contained back-slashes twice.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

* Though the trailing backslash will not be touched, the closing square bracket is not recognized as it is

now exempt from brace counting.

133 / 146

http://tbfe.de/
http://plc2.com/

Special Square-Bracket Rules

Via the unknown procedure the Tcl syntax analysis determines what should

happen in case of unknown command.

This allows a nifty trick in Vivado, to allow the use of VHDL signal vectors

in their typical forms like [1:16], [5], or [*] without quoting the square

brackets:

The syntax analysis does nothing special here, it simply identifies the

command to be executed as being spelled 1:16, 5, or *.

If the unknown procedure detects that there is no built-in command

with such a name, it simply returns it (as a string) [1:16], [5], or [*].*

Problem Solved!

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Though, really, really interesting and "unexpected" things may happen in a Vivado design flow based on

Tcl if you have the boldness to defined a procedure with a funny name that happens to look like a signal

vector you use, e.g.: `proc 1:16 {} { return {[16:1]} }

134 / 146

http://tbfe.de/
http://plc2.com/

Matching Design Objects Names

When design objects are returned as lists from the various get_-

commands, it is often the case that their elements are selected via

match-patterns for their names.

There are two matching styles:

The default is pattern matching as with Tcl's command string match is

used on the individual parts of an object's hierarchical name.

If requested via the -regex option comparisons will be based on Tcl's

regular expressions.

The former is further controlled by the -hierarchical option together with

current_instance, and is often more convenient. The latter is much more

powerful but careful attention must be paid to correct quoting.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 135 / 146

https://www.tcl.tk/man/tcl/TclCmd/string.htm#M35
http://tbfe.de/
http://plc2.com/

Default Matching of Design Objects Names

This is also known as "glob-style matching" and further controlled by

the current_instance setting and

the -hierarchical option.

The model is similar to navigating in a hierarchical file system, but not as

close as it may seem at first glance:

The (Vivado) commando current_instance is somewhat similar to

setting the working directory in that it sets the working instance.

Glob-style patterns not containing the hierarchical separator / (i.e. a

slash, just as in Unix file systems) search from that instance.

Glob-style patterns containing the hierarchical separator will search

deeper down from the current instance.

Note that there is no way to refer to the top-level directly when the

current instance is set elsewhere (i.e. like using absolute path names in

file systems).

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 136 / 146

http://tbfe.de/
http://plc2.com/

Recursive (Glob-Style) Matching

With the -hierarchical option the search pattern must not contain the

hierarchical separator and is applied in a recursive search down from the

current instance to each element of the composed name.

The Vivado documentation (UG835, pg. 16) explains the -hierarchical

option …

set pattern … ;# pattern to match names

current_instance "" ;# set scope to top-level

set result [get_cells -hierarchical $pattern]

… with the manual approach that had to be used alternatively:*

set result {}

foreach hcell [list "" A B A/a1 A/a2 B/b1 B/b2] {

 current_instance $hcell ;# move scope to $hcell

 set result [concat $result [get_cells $pattern]]

 current_instance ;# return scope to design top-level

}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: A B A/a1 A/a2 B/b1 B/b2 is the whole set of cell names used in their miniature example, and "" needs to

be added so that the top-level itself is included.

137 / 146

http://tbfe.de/
http://plc2.com/

[!]

Regular Expressions to Match Design Objects Names

This kind of matching is much more powerful but careful attention must

be paid to correct quoting.

Trial and Error with regular expressions in combination with

quoting will more often lead to frustration than to success.*

This does not mean you should avoid it – it rather means you should feel

familiar with both, regular expressions and quoting, when using both in

concert.

Live examples will be given if this topic is of special interest.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: This is especially true if (part of) the selection pattern comes from a variable. Though the Tcl syntax can

be generally considered as very "regular" and hence easy to grasp (as there are few rules only that

apply strictly with little or no exceptions) be sure to develop a good understanding for its intricacies.

138 / 146

http://tbfe.de/
http://plc2.com/

More Uses of Tcl in Vivado

Actually the Tcl language is used in some specialised areas of Vivado too.

Custom Design Rule Checks (DRC):

In this some boiler-plate code is necessary.

For the general recipe to be followed see the Vivado

documentation (UG894, pg. 28).

Design Constraints (XDC)

While many Vivado specific commands is available …

… substantial built-in Tcl commands are deliberately blocked.*

For details see the Vivado documentation (UG903, Appendix A),

The restrictions to Tcl commands only apply if constraints are specified

in *.xdc files. In *.tcl files all the usual Tcl built-ins are available.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: The reason for not supporting the full set of Tcl built-in commands is that Vivado provides a way to

interactively modify constraints specified in *.xdc files.

139 / 146

http://tbfe.de/
http://plc2.com/

Problematic Areas

All commands that register call-backs are often pointless (though these

commands are available)

as there is no event loop running by default, and

if one is started explicitly, it would block the return to GUI mode.

What will work is to establish a TCP/IP-socket connection between the Tcl

interpreter running on behalf of Vivado and some external program.

An external program connected to the Tcl interpreter inside Vivado via

TCP/IP may or may not itself be written in Tcl.

Nevertheless, by giving up event-driven style at least on the side of

Vivado, some communication options are lost!

For one-way communication also a classic pipeline may be used and is

easily established for reading or writing via the command open.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Though it might even be possible to arrive at an integrated solution if sufficient work is invested, also

with respect to future Vivado versions that may change the internal working, it seems wise to separate

event-driven architectures from each other.

140 / 146

http://tbfe.de/
http://plc2.com/

Tcl beyond Vivado

Using Tcl beyond Vivado can have several faces:

Extend Vivado with Tcl (and possibly Tk) in areas which are not

properly prepared for it.*

Use Tcl for local scripting purposes, from small to medium to large to

mission critical applications, possibly touching the core competences

of a software development department or a whole company (has

been done … successfully).

Use Tcl combined with Tk to provide Graphical User Interfaces.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: This is not meant as criticism with respect to Vivado, it only means that there are use possible case not

foreseen, especially when the necessity arises to merge event loops.

141 / 146

http://tbfe.de/
http://plc2.com/

Calling C/C++-Modules

Extending Tcl with modules written in C offers big chances for rapid

prototyping,

doing the first sketches in a Tcl-only implementation,

either as "proof of concept", or

to determine what actually is required

then identifying the parts that need substantial performance

improvements, and

finally rewriting these in C or C++.

This should work with Vivado too,* but the author has not yet tried it.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Of course, this makes sense only if Tcl is used heavily to script the Vivado work flow and there are – and

provably – parts which substantially profit from a re-implementation in C or C++.

142 / 146

http://tbfe.de/
http://plc2.com/

TCP/IP-Communication

TCP/IP-Communication usually has two sides:*

The Server Side which usually needs some concurrency – or at least a

"user experience" that "feels" like, as can be achieved in a event

driven design with compact and efficient call-backs.

The Client Side which may or may not need concurrency.

As with Vivado the event driven programming model – though thoroughly

supported by Tcl – is difficult to exploit, Vivado can only be extended with

Tcl to work as a simple form of TCP/IP-client.

A possible idea what that could be was sketched in Part 1.

Live examples will be given if this topic is of special interest.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Though note, that the data stream as such is symmetrical, once a socket connection has been

established.

143 / 146

http://tbfe.de/
http://plc2.com/

GUI-Programming

GUI-Programming – contributed to Tcl via Tk* – is the major extension

added to Tcl very early and partially as "Proof of Concept" to demonstrate

the extensibility of Tcl.

Here is your very first TK application:

#!/usr/bin/wish

wm title . "Hello, World of Tk"

pack [button .b\

 -text "Do NOT klick here!\n(please)"\

 -background red\

 -foreground white\

 -command exit

]

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: Actually Tk is the abbreviation for Toolkit – so, strangely, a very general name was chosen for a Tcl

extension with a very specific purpose.

144 / 146

http://tbfe.de/
http://plc2.com/

Tk Pro's

Easy to learn, once you know Tcl including is peculiarities.

Relatively "lightweight", i.e. small memory footprint compared to later

GUI libraries.

Excellent reputation for its portability across operating systems, its

robustness and long-term stability / backward compatibility.

Encourages to use layout management via strategies, not fixed

placements.

Enough widgets for all basic tasks, including a (very powerful!) text

area and a (rather basic) canvas.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center 145 / 146

http://tbfe.de/
http://plc2.com/

Tk Con's

If someone does not like Tcl for any reason, probably hard(er) to learn.

Not so may "nifty" widgets as more recent GUI libraries.

Some pre-manufactured standard-dialogues are no shining example

for usability.

Can not cope with Qt (also for other reasons) … but does Tk strive to?

Despite of all the above, Tk is very well suited for adding a GUI to an

embedded device with a touch screen, especially if the device software

is based on Linux.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel    2019-01-21 … 2019-01-22 PLC2 – Programmable Logic Competence Center

*: This becomes especially visible in the standard file selection dialogue Tk shows under Linux, which is,

well, "in need to getting used to". Though, Linux also has so many different file managers that a

"standard look & feel", how to present files from which a user can select, is hard to derive.

146 / 146

http://tbfe.de/
http://plc2.com/

