
C++11 BLWS (Monday 2)
Universal Basic Helpers

1. C++11: Callables (std::function)
2. Boost: Callables
3. C++11: Lambdas
4. Function Objects
5. Boost: Lambdas
6. C++11: Binders (std::bind)
7. Boost: Binders
8. C++11: Reference Wrappers
9. C++11: Tuple

10. Boost: Tuple
11. Boost: Optional
12. Boost: Any
13. Boost: Variant

Short breaks will be inserted as convenient.

Styled with styling.css by Martin Weitzel 1 / 45

file:///Synopoly/Mwtech/We-Train/MicroConsult/Cpp11BLWS/Presentation/00_topics.html#agenda
file:///Synopoly/Mwtech/We-Train/MicroConsult/Cpp11BLWS/Presentation/styling.css

C++11: Callables (std::function)
C++11 adds a template to represent Callables.

This template is kind of a Compile Time Wrapper Class Generator
manufactoring objects with an overloaded function call operator.

Such objects can be initilalized with:

Classic C Function Pointers

C++11 Lambdas

Function Objects aka Functors*

See also Josuttis: 5.4.4

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: The term Functor is commonly applied if the main purpose of a class instance is to be called like a
function (via its overloaded operator()). A typical example is shown when classic C++ function objects
are covered.

2 / 45

http://tbfe.de/
http://microconsult.de/

C++11: std::function Template Instantiation
As std::function is a class template*, instantiation arguments have to be
supplied.

The syntax should be obvious from the following examples:

std::function<void()> f1; // no args, returns nothing

std::function<int(int)> f2; // int arg, returns int

 // const char* arg,
std::function<double(const char *)> f3; // returns double

 // const char*, const char**, int arg,
 // returns double
std::function<double(const char *, const char**, int)> f4;

Encoded in the type of an std::function are the types of its arguments
and the return type.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Actually function objects are an application of a C++ idiom known as Type Erasure.

3 / 45

http://tbfe.de/
http://microconsult.de/
http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Type_Erasure

C++11: std::function Initialization / Assignment
On initialization, or when something is assigned to it, an instance of type
std::function accepts anything

that can be called as a function,

with the required number of arguments,

returning a value of the required type.*

The actual rules are a bit more complicated and allow certain type
conversions to occur at the actual call.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: A function, functor, or lambda actually returning a value may be assigned to an std::function instance
that assumes a callable to return nothing. The result will simply be dropped from the assigned callable
when a call is made through the function object not returning a value.

4 / 45

http://tbfe.de/
http://microconsult.de/

C++11: std::function Calls
Calling a function through an std::function uses exactly the same syntax
as an ordinary function call.

Note that the following example only demonstrates the principle, it has no
real use:*

#include <cstdlib>
#include <functional>

std::function<int(const char *)> f;

int main() {
 f = std::atoi;
 return f("42");
}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: In case you are eager to demonstrate that f has actually been called here, with Unix or Linux this is not
difficult: instead of running the executable with ./a.out use echo $(./a.out).

5 / 45

http://tbfe.de/
http://microconsult.de/

C++11: std::function Testing
Similar to a classic function pointer – which an std::function instance
isn't(!) – it may or may not refer to a callable entity at any point in time:

1. When in an initialization none has been provided (e.g. if initialized by
its default constructor).

2. After it has been explicitly cleared, typically by assigning a nullptr.

The state can be checked by using the instance in a boolean context:

#include <cassert>
#include <cstdlib>
#include <functional>

int main() {
 std::function<int(const char *)> f;
 assert(!f); // using boolean negation from classic C
 f = std::atoi;
 assert(f);
 f = nullptr;
 assert(not f); // using alternative form of boolean negation
}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 6 / 45

http://tbfe.de/
http://microconsult.de/

std::function Efficiency
The implementation of std::function need not be understood* – it can be
used in "cookbook-style" … but two key points to keep in mind are:

1. Calls through an std::function involve calling a virtual member
function. I.e. there is always the overhead of a function [v]call at
assembler level (jsr-rts) – so inlining may not be possible.

2. If the first restriction is acceptable, preferring an std::function over a
generic type may reduce code bloat for templated predicates.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Type erasure works (approximately) along the following lines:

 // modelled here for the case function<int(bool, const char *)> only:
struct Fwd { virtual Fwd *clone() =0; virtual int call(bool, const char *) =0; virtual ~Fwd() {} };
template<typename ActualImplementor> struct SpecificForwarder : public Fwd {
 ActualImplementor implementor;
 SpecificForwarder(const ActualImplementor &impl) : implementor(impl) {}
 virtual Fwd *clone() { return new ActualImplementor(implementor); }
 virtual int call(bool b, const char *s) { return implementor(b, s); }
};
struct TypeErased {
 std::unique_ptr<Fwd> fwd;
 template<typename T> explicit TypeErased(const T &impl) : fwd(new T(impl)) {}
 TypeErased(const TypeErased &other) : fwd(other.fwd ? other.fwd->clone() : nullptr) {}
 int operator()(bool b, const char *s) { return fwd->call(b, s); }
 … // more ops not shown (assignment, test for empty etc.)
};

7 / 45

http://tbfe.de/
http://microconsult.de/

Using std::function vs. Fully Generic Types (1)
A predicate in a (templated) algorithm could be restricted to a callable
type via std::function:

template<typename T1, typename T2>
T2 filter(T1 beg, T1 end, T2 to,
 std::function<bool(typename T1::value_type)> pred) {
 while (beg != end) {
 const auto &val = *beg;
 if (pred(val))
 *to++ = val;
 ++beg;
 }
 return to;
}

If T1 and T2 denote types (maybe different to each other)

which do not vary for many calls
that all use a different predicate

there will be only one single instantiation of this function. (I.e. the
instantiation will not depend on the actual predicate.)

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 8 / 45

http://tbfe.de/
http://microconsult.de/

(i)

Using std::function vs. Fully Generic Types (2)
In contrast to the previous example, with the following template the
compiler is able* to inline the predicate evaluation, resulting in some
"code bloat":

template<typename T1, typename T2, typename T3>
T2 filter(T1 beg, T1 end, T2 to, T3 pred) {
 while (beg != end) {
 const auto &val = *beg;
 if (pred(val))
 *to++ = val;
 ++beg;
 }
 return end;
}

No general rule or guideline can be given which solution to
prefer over the other, as this depends on various factors.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Whether the actual predicate evaluation will be inlined also depends on other factors, like its definition
is visible (and maybe explicitly made inline), or whether it is a classic function for which at the call site
only an extern declaration is known. Also note that different compilers may vary in handling the above
and the final result may depend on the optimization level requested.

9 / 45

http://tbfe.de/
http://microconsult.de/

Boost: Callables
C++11 std::function emerged from Boost.Function.

There are few differences, the most important is that boost::function
tried to be compatible with older compilers that did not fully support the
required Preferred Syntax.

So Boost supplied its Portable Syntax as an alternative:

boost::function0<void> f1; // no args, returning nothing
boost::function1<int, int> f2; // int arg, returning int
boost::function1<double, const char *> f3;
boost::function3<double, const char *, const char**, int> f4;

It encodes the return type as first template argument,

followed by the argument types (if any), and

reflects the number of arguments in the class name.

See also Schäling: 3.4

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 10 / 45

http://www.boost.org/doc/libs/release/doc/html/function.html
http://tbfe.de/
http://microconsult.de/

C++11: Lambdas
Introducing Lambdas with C++11 was a major step to bring C++ at level
with many other modern programming languages, in which

functions not only were made "First Class Citizens" but

it is also possible to specify a function body at its point of use,*
especially as argument to some other function call.

The general definition syntax

starts with a capture list in square brackets,

followed by an argument list in round parenthesis,

followed by the function body in curly braces.

See also Josuttis: 6.9

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: This is why lambdas are also known as Function Literals.

11 / 45

http://en.wikipedia.org/wiki/Anonymous_function
http://tbfe.de/
http://microconsult.de/

Lambda 101 – Definition Syntax Example
Building on the filter algorithm from a prior slide the predicate could be
supplied directly and clearly visible at the call site:

std::vector<double> data, result;
… // fill data
filter(data.begin(), data.end(), std::back_inserter(result),
 [](double e) { return (e < std::sqrt(2.0)); }
};

Note that the above will work with either version of filter, the one with
the predicate parametrized to any type and the one with the predicate
limited to an appropriate callable.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: An algorithm like this is available as std::copy_if in C++11. (It was actually missing from C++98 where
std::remove_copy_if had to be used with the predicate logic inverted.)

12 / 45

http://tbfe.de/
http://microconsult.de/

[!]

Lambda 101 – Capture Lists (Motivation)
It should be understood that for any function (e.g. filter) expecting some
other function as argument,

the function handed over by the caller (i.e. as argument to filter)
must be callable by the coded inside (i.e. the implementation of
filter).

Therefore it is not possible to hand over additional arguments directly:

filter(data.begin(), data.end(), std::back_inserter(result),
 [](double e, double max) { return (e < max); }
};

This will not compile because the lambda not matches the
expectation filter has about the use of its fourth argument.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: How the error manifests in a compiler diagnostic is a different issue: if – after some type deduction –
filter had an argument of type std::function<bool(double)> the compiler will complain at the call-site
not being able to initialize the predicate argument from what is specified; for a fully generic template it
will rather complain inside the code of the template where the actual call is coded.

13 / 45

http://tbfe.de/
http://microconsult.de/

Lambda 101 – Capture Lists (Example)
In a capture list variables from the local context may be named.

Then in the code generated for the lambda that argument is transfered via
a special path:*

double max;
std::cin >> max;
…
filter(data.begin(), data.end(), std::back_inserter(result),
 [max](double e) { return (e < max); }
};

So far this presentation only tried to give some first clues about the
purpose and basic use of lambda capture lists.

There are many more details which have not been covered yet, like
handing over references in the capture list or some shortcuts for it.

Please lookup more information in the relevant reference documentation.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: If you are curious about that you will get an idea when Classic C++ Function Objects are covered.

14 / 45

http://tbfe.de/
http://microconsult.de/

[!]

Lambda 101 – Beware of the Pitfalls
For efficiency reasons C++11 does not demand any special rules for
stack unwinding when a lambda captures a local context by reference:*

function<void()> foo(int n) {
 return [&n]() { std::cout << n; }
}
…
foo(42)();

Therefore the above code fragment steps into the area of
undefined behavior.

Of course, the situation might go unnoticed for a long time as the
correct value just happens to be in the expected memory location …

… until, some day, a completely unrelated change is made!

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: It is basically a similar situation as returning the address of a local variable from a function, which is
undefined behavior since the first days of C. But while most any decent compiler will warn about this,
the problem shown here most often goes unnoticed. It can be expected that code like above will trigger
a warning too when future C++ compilers improve their checks in this respect.

15 / 45

http://tbfe.de/
http://microconsult.de/

Classic C++ Function Objects
Prior to C++11 lambdas – in C++98 and C++03 – code that can now be
written elegantly with lambdas had to be written with Functors:*

struct LessCompare {
 const double limit;
 LessCompare(double lim) : limit(lim) {}
 bool operator()(double e) { return (e < limit); }
};
…
double max;
std::cin >> max; // only as example (max not known at compile-time)
…
filter(data.begin(), data.end(), std::back_inserter(result),
 LessCompare(max)
);

See also Josuttis: 6.10

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: To avoid unnecessary complexity the LessCompare functor was not written as a template here. Of course
this could have been easily done (and in practice probably would have done) to make the functor
applicable to any type supporting operator<().

16 / 45

http://www.cprogramming.com/tutorial/functors-function-objects-in-c++.html
http://tbfe.de/
http://microconsult.de/

Boost: Lambdas
As lambdas were missing for a long time from the C++ language proper, it
was tried to emulate them via the library.

To rewrite the example that has been used a number of times:

#include <boost/lambda/lambda.hpp>
…
filter(data.begin(), data.end(), std::back_inserter(result),
 boost::lambda::_1 < max);

The innocuous looking boost::lambda::_1 above, together with a
clever overload of operator<, triggers the complex template based
machinery.*

Last and finally a functor is created that overloads operator() to be
callable with a single argument, returning true if the argument is less
than max.

See also Schäling: 5.4

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: If you are curious to learn the details try to get familiar with Expression Templates first, because these
build the underlying general mechanism.

17 / 45

http://tbfe.de/
http://microconsult.de/
http://en.wikipedia.org/wiki/Expression_templates

Boost: Lambda Details
While C++11 lambdas now provide a much more general and flexible
solution, it can be argued that Boost lambdas are less blatant and in many
cases of practical relevance can be create with much fewer key strokes.*

This is especially true if the namespace boost::lambda is opened via
using directives, because then the occurrence of the plain identifiers _1,
_2, or _3 in an expression are sufficient to trigger the mechanism.

std::vector<double> data;
…
sort(data.begin(), data.end(), (_2 < _1)); // sort data in reverse

The above example, rewritten for C++11 lambdas, illustrates the point:

sort(data.begin(), data.end(), [](double lhs, double rhs) {
 return (rhs < lhs);
 }); // sort data in reverse

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Whether or not this is considered to be an issue to guide a decision pro or contra Boost lambdas may
also depend on the capabilities of an IDE, which – if properly configured – might insert source code
templates for frequently used C++11 lambdas with a keyboard shortcuts.

18 / 45

http://tbfe.de/
http://microconsult.de/

Boost: Lambda Beyond Trivial Use
Beyond the trivial use in pure expressions – and even there sometimes –
using Boost Lambdas (or rather the expression templates behind them)
can quickly get intricate.

While it is well possible to translate the following into a Boost Lambda,
you probably will not want to do it when you can avoid it:*

vector<double> data;
…
int line{0};
std::for_each(data.begin(), data.end(),
 [&line](double e) {
 std::cout << ++line << ':' << e << '\n';
 if (line % 10 != 0) std::cout << "---\n";
 });

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Of course, if you really have to back-port the above code written for C++11 to some older compiler it
may be good to know that Boost Lambdas stretch far beyond the simple, expression-like use cases and
all the typical flow control directives are supported.

19 / 45

http://tbfe.de/
http://microconsult.de/

C++11 vs. Boost Lambdas
Which one to prefer cannot be generally decided:

For very simple expressions Boost Lambdas may be considered as an
alternative.

On the other hand, as soon as the situation is a bit more involved,
correct use of Boost Lambdas quickly becomes tricky (at least).

Generally speaking with Boost Lambdas there is a steep learning curve
beyond the trivial cases, especially when flow control beyond pure
expressions is required.

It will not make much sense to rewrite all usages of Boost Lambdas now
that C++11 lambdas are available, but rewriting the complicated ones
to better comprehensible C++11 lambdas may be worth a
consideration*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 20 / 45

http://tbfe.de/
http://microconsult.de/

C++11: Binders (std::bind)
Binders are a mechanism that may or may not* be preferred over lambdas
in simple situations where a new function is created from an
existing one and

either the new function needs fewer arguments because some
arguments of the existing function will receive fixed values,

or requires its arguments specified in a different order from a given
call (which may e.g. be dictated by an algorithm to which the
resulting function is handed over as argument),

or both.

See also Josuttis: 6.10.3

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Whether or not to use binders or stick purely with lambdas seems to be mainly a matter of taste.

21 / 45

http://tbfe.de/
http://microconsult.de/

Reducing Number of Arguments with std::bind
In the following std::bind adapts the function bar, which has three
arguments, to be called from inside foo with only two arguments and the
middle argument fixed to the square root of two:

#include <functional>
using namespace std::placeholders;
extern void bar(int, double, const char *);
…
foo(std::bind(bar, _1, std::sqrt(2.0), _2));

Note that the placeholders can be used unqualified here because they
have been imported from their (sub-) namespace.*

The highest placeholder number used (_2 above) determines the (lower
bound of the) argument count of the function returned from std::bind.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Because of the identical names making placeholders visible as _1, _2 etc. may collide with
Boost.Lambda placeholders or Boost.Bind placeholders. In general special care must be taken when
std::bind is mixed with other libraries that use such placeholder names too for their own purpose.

22 / 45

http://tbfe.de/
http://microconsult.de/
http://www.boost.org/doc/libs/1_55_0/doc/html/lambda/le_in_details.html#lambda.placeholders
http://www.boost.org/doc/libs/release/boost/bind/placeholders.hpp

Changing Order of Arguments with std::bind
In the following std::bind adapts the function baz, which has two
arguments to be called from inside foo with the arguments reversed:

#include <functional>
using namespace std::placeholders;
extern void baz(const char *, int);
…
foo(std::bind(baz, _2, _1));

It is also possible to drop arguments completely:*

foo(std::bind(baz, _2, 42));

In both cases std::bind returns a function that needs to be called with
two arguments, determined by the placeholder _2.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: More exactly, the placeholder _X with the largest value of X determines that (at least) a number of X
arguments are required to call the function returned from std::bind. Supplying lesser arguments in a
call will result in a compilation error.

23 / 45

http://tbfe.de/
http://microconsult.de/

Binding Member Functions
It is also possible to use std::bind for objects and their members – shown
here only for member functions but it works the same for any accessible
member data.

The only thing special here is that objects are bound as if they were the
member function's first argument.*

The next two examples assume the following class:

class MyClass {
 …
 void f(int);
 void cf(int) const;
 int g(char) const;
};

To make the following examples applicable in a cookbook-style, they
introduce Reference Wrappers which are more fully covered only later.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: In other words: more or less binding simply makes explicit what is happening anyway ("behind the
scenes") whenever a member function is called …

24 / 45

http://tbfe.de/
http://microconsult.de/

Binding Member Functions to Same Object

It is possible to bind the same object to various arguments:*

MyClass mc;
std::vector<int> data;
… // fill data
std::for_each(data.begin(), data.end(),
 std::bind(&MyClass::cf, mc, _1));

As std::bind uses value arguments the use of a reference wrapper like
std::cref may help to improve performance …

std::for_each(data.begin(), data.end(),
 std::bind(&MyClass::cf, std::cref(mc), _1));

… or std::ref may even be necessary to make modifications visible:

std::for_each(data.begin(), data.end(),
 std::bind(&MyClass::f, std::ref(mc), _1));

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Note that std::for_each was chosen here only because it constitutes a very simple example. Especially
given range-based loops in C++11 the above could well be replaced with: for (auto e : data) mc.cf(e);

25 / 45

http://tbfe.de/
http://microconsult.de/

Binding Member Functions to Different Objects
Also various objects may be bound to call the same member function:*

std::vector<MyClass> objs;
… // fill objs
auto n = std::accumulate(objs.begin(), objs.end(), 0,
 std::bind(&MyClass::g, _1, 'a'));
…
std::list<int> result;
std::transform(objs.begin(), objs.end(),
 std::back_inserter(result),
 std::bind(&MyClass::g, _1, 'z'));

Rewritten to range based loops the above is equivalent to:

int n{0};
for (const auto &e : objs) n += e.g('a');
…
for (const auto &e : objs) result.push_back(e.g('z'));

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Note that these examples are different from the ones on the previous slide as _1 now refers to the object
from the container and triggers generating the appropriate expression template, so no reference
wrapper is required here.

26 / 45

http://tbfe.de/
http://microconsult.de/

Binding Member of Different Objects with
Different Arguments
Generally speaking, possible limitations are not so much imposed by
std::bind as by what algorithms exist.*

As there exists a variant of std::transform to process two containers in
parallel, a selected member function may also be applied to different
objects with different arguments:

std::string data;
… // fill data;
assert(data.size() >= objs.size());
std::transform(objs.begin(), objs.end(), data.begin(),
 std::back_inserter(result),
 std::bind(&MyClass::g, _1, _2));

Translated into a range-base loop the above is equivalent to:

auto z = data.cbegin();
for (auto &e : objs) result.push_back(e.g(*z++));

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Not to say: The possibly limited knowledge of developers with respect to the algorithms available in
C++11 and Boost … well, that's not you as you're here now :-)

27 / 45

http://tbfe.de/
http://microconsult.de/

std::bind vs. C++11 Lambdas
Everything that can be achieved with std::bind can be achieved with
lambdas too.*

The most visible difference is that with lambdas the argument types are
more explicit:

foo([](int _1, const char *_2) { bar(_2, std::sqrt(2), _1); });
foo([](int _1, const char *_2) { baz(_2, _1); });
foo([](int , const char *_2) { baz(_2, 42); });
foo([](int _1, const char *) { baz("hello", _1); });

The above example emphasizes this similarity by using _1 and _2 as
name for the formal lambda arguments.

Usually such names were rather chosen according to their purpose, like:

foo([](int count, const char *name) { baz(name, count); });

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: With C++11 lambdas as well as with Boost lambdas though the topic will only be discussed for the
former here.

28 / 45

http://tbfe.de/
http://microconsult.de/

Boost: Binders
C++11 std::bind emerged from Boost.Bind.

There are few differences most of which are related to lifted restrictions
because C++11 supports true variadic templates.

With std::bind the maximum number of arguments of the adapted
function is essentially unlimited, while

the maximum number of arguments for the function returned from
std::bind is determined by the highest placeholder number defined
in an implementation.

For boost::bind there may be a fixed limit* for both, the number of
arguments of the adapted function and the number of arguments of the
function returned.

See also Schäling: 3.2

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Whether there is a fixed limit depends on the compiler used and what exactly is the limit is determined
be a configuration step that is run prior to the installation of Boost. Increasing the default limit typically
has a price in header file size and hence longer compilation time (with negative impacts probably only
for unreasonably large limits).

29 / 45

http://www.boost.org/doc/libs/release/libs/bind/bind.html
http://tbfe.de/
http://microconsult.de/

C++11: Reference Wrappers
At many places C++ prefers handling (copies of) values:

Often this is safer and relieves the developer from the burden of
caring about aliasing issues or memory ownership.

Where necessary, references instead of a values can be explicitly
chosen.

In case of library functions the interface sometimes cannot be
changed easily, here reference wrappers may be inserted instead.

Reference wrappers have already been used in two prior examples for
std::bind:

One such use (std::cref) was only to improve performance,*

without the other (std::ref) the code wouldn't have worked as
intended.

See also Josuttis: 5.4.3

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Not all uses of std::cref are only to improve performance – for classes which make their objects non-
copyable they may be necessary so that the code compiles in the first place.

30 / 45

http://tbfe.de/
http://microconsult.de/

Reference Wrapper Example (1)
The following function print automatically inserts line breaks if otherwise
a given length would be exceeded:

void print(std::string word, unsigned maxlen, unsigned &filled) {
 if (filled + word.length() > maxlen) {
 std::cout << '\n';
 filled = 0;
 }
 if (filled > 0) {
 std::cout << ' ';
 ++filled;
 }
 std::cout << word;
 filled += word.length();
}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 31 / 45

http://tbfe.de/
http://microconsult.de/

[!]

Reference Wrapper Example (2)
Assuming there are a number of words of type std::string in a sequential
container text, the above function could be adapted to be used with
std::for_each:

unsigned line_filled = 0;
auto p80 = std::bind(print, 80, line_filled);
std::for_each(text.begin(), text.end(), p80);

A first test shows that it works as expected. But it fails if the words come
in two containers text and moretext where the second should continue
printing in the last line of the first, if it's only partially filled:

std::for_each(moretext.begin(), moretext.end(), p80);

The reason is that std::bind takes its arguments by value, so
the reference to filled which is modified actually isn't
line_filled but a copy of it in the generated (invisible) binder

object.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 32 / 45

http://tbfe.de/
http://microconsult.de/

Reference Wrapper Example (3)
The solution is to connect line_filled through a reference wrapper.

This is most easily done by the helper function std::ref:*

auto p80 = std::bind(print, 80, std::ref(line_filled));

There is also a constant reference version std::cref, providing a solution
for constant but non-copyable types that need to be bound:

class MyClass {
 …
 MyClass(const MyClass &) = delete;
 …
};
…
MyClass obj;
void foo(…, const MyClass &arg, …);
… std::bind(foo, …, obj, …) … // COMPILE ERROR
… std::bind(foo, …, std::cref(obj), …) … // OK

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Of course reference wrappers are not a recent invention of C++11 but had been available via Boost.Ref
since long … (only, due to the close similarity to C++11 they do not receive a slide of their own here).

33 / 45

http://tbfe.de/
http://microconsult.de/
http://www.boost.org/doc/libs/release/doc/html/ref.html

C++11: Tuple
Tuples are kind of ad-hoc structures and are mainly used to temporarily
combine several unrelated values to be handled as unit, e.g. in a function
result.

The similarity of std::tuple to std::pair for the above use case is obvious
and if tuples had been part of C++98 they would have probably been
used in some places were currently std::pair is used.

Because the number of elements in a tuple is unlimited* they cannot be
names (like first and second in a pair) and a different technique must
be applied to access the individual parts of a tuple.

See also Josuttis: 5.1

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Interestingly, the other border case are not tuples with a single element, but completely empty ones.
These not only may have some use in very generic, templated data structures but can also help to write
compile time algorithms to process all elements of a tuple. This can be done by recursive calls of
variadic templates, terminated with a specialization for the (degenerate) empty tuple.

34 / 45

http://tbfe.de/
http://microconsult.de/

Definition and Initialization of std::tuple
When defining a tuple the type of its elements may be explicitly defined:

std::tuple<int, double, const char *> t;

This may – of course – be combined with an initialization:*

std::tuple<int, double, const char *> t{42, std::sqrt(2), "hello"};

Types can be omitted by using auto:

auto t = std::make_tuple(42, std::sqrt(2), "hello");
// or:
auto t(std::make_tuple(42, std::sqrt<float>(2), "hello"));

But: As a subtlety of "uniform initialization" the following creates a tuple
too, though quite a different one:

auto t{std::make_tuple(42, std::sqrt(2), "hello")};

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: And of course any classic initialization syntax may be used here in place of the curly braces style.

35 / 45

http://tbfe.de/
http://microconsult.de/

[!]

Element Access of std::tuple
To access individual elements a global getter-function must be used:

… std::get<0>(t) … // the int
… std::get<1>(t) … // the double
… std::get<2>(t) … // the const char *

It should be understood that the "element index" for std::get
has to be a compile time constant.

Therefore the following will not work:*

for (int i = 0; i < 3; ++i) std::cout << std::get<i>(t) << '\n';

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: There are ways to print all the elements of a tuple – but it must be done with a loop unrolling itself
completely at compile time, as for each element a different overload of operator<< might have to be
used.

36 / 45

http://tbfe.de/
http://microconsult.de/

Unpacking an std::tuple
There is a different technique that unpacks all elements of a tuple at
once:

int count;
double value;
const char *name;
std::tie(count, value, name) = t;

Obviously this has its greatest advantage if all values have to go into a
variable of their own, or at least most values:

int count;
std::string name;
std::tie(count, std::ignore, name) = t;

Compared to element access with std::get it is said that a small
overhead may be imposed by std::tie, but surely far from substantial.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Vague language is used here to indicate that details will vary between implementations and future
compilers may apply code-generation techniques to improve chances for optimization, putting std::tie
at par with direct member assignment.

37 / 45

http://tbfe.de/
http://microconsult.de/

Modifying std::tuple
As std::get returns a reference, it is straight forward to modify individual
elements of a tuple:

std::get<0>(t) = 12;
std::get<1>(t) *= 2;

Tuples can be also modified as a whole, only given each of their elements
are assignment compatible:

std::tuple<int, double> t1{3}, t2{12, std::sqrt(2)};
auto t3 = std::make_tuple(true, 0u);
t1 = t2; t2 = t3; t3 = t1;

Assigning all elements at once fails if some or all are const-qualified:

std::tuple<const int, double> t4{-1, 0.0};
const std::tuple <int, double> t5{0, 0.0};
t1 = t4; // OK (of course can assign FROM const)
t4 = t1; // FAILS because first member is const
t5 = t1; // FAILS because all members are const
std::get<1>(t4) = std::get<1>(t1); // OK

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 38 / 45

http://tbfe.de/
http://microconsult.de/

Boost: Tuple
C++11 std::tuple emerged from boost::tuple.

There are few differences most of which are related to lifted restrictions
because C++11 supports true variadic templates.

With std::tuple there is no upper limit to the number of contained
elements.

For boost::tuple the maximum is limited – usually to 10 or 20,
depending on the configuration step (optionally) run as first thing
during the Boost installation.

Another difference is that std::tuple can only be accessed with the
global getter while boost::tuple also has a member for that purpose:*

… std::get<2>(t) … // C++11 and Boost
… t.get<2>() … // Boost only

See also Schäling: 14.2

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Of course, here t is assumed to be a tuple with at least three elements.

39 / 45

http://www.boost.org/doc/libs/release/libs/tuple/doc/tuple_users_guide.html
http://tbfe.de/
http://microconsult.de/

Boost: Optional
The use of boost::optional may be considered as an alternative to using
pointers and having the nullptr represent the does-not-exist case.

Differently from the pointer approach with boost::optional no heap
allocation will occur.

Instead boost::optional reserves space for its payload data type
plus a flag (e.g. on the stack in case of a local variable) …

… uses Placement new when the payload space is eventually to be
initialized …

… and an Explicit Destructor Call when it is to be invalidated.

boost::optional<int> x; // default initialized …
assert(!x); // ... it's not yet valid ...
x = 42; // ... now gets assigned ...
assert(x); // ... tested here ...
assert(x.get() == 42); // ... retrieved here

See also BoostBook: optional

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 40 / 45

http://en.wikipedia.org/wiki/Placement_syntax
http://www.parashift.com/c++-faq/dtors.html
http://tbfe.de/
http://microconsult.de/

Boost: Any
The use of boost::any may be considered as an alternative to using
untyped pointers (void *) to achieve "runtime polymorphism" for types
that cannot be related through a common base class.

Internally boost::any refers to the assigned data via a void* member
…

… while with an additional member it tracks the type assigned last …

… for which it can be queried in a convenient syntax.

boost::any x; // default initialized to nullptr
if (…) // depending on a runtime condition ...
 x = true; // ... may actually hold a boolean ...
else if (…) // ... or in a different case ...
 x = std::sqrt(2.0); // ... may actually hold a double ...
else if (…) // ... or yet differently ...
 x = std::string("hi!"); // ... an std::string ...
else // ... or ...
 x = …; // ... (who knows?)

See also Schäling: 14.3

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 41 / 45

http://www.boost.org/doc/libs/1_56_0/doc/html/any.html
http://tbfe.de/
http://microconsult.de/

Boost: Any (cont.)
To access a boost::any its content type must always be tested for.

There is a rather systematic way to do so:*

if (bool *p = boost::any_cast<bool>(&x)) {
 … *p … // access member if of type bool
}
else if (double *p = boost::any_cast<double>(&x)) {
 … *p … // access member if of type double
}
else if (std::string *p = boost::any_cast<std::string>(&x)) {
 … *p … // access member if of type std::string
}

The pointers p can also be auto or auto *-typed.

That way there is only one type to adapt when a code block gets copy-
pasted to implement a new type case branch.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Here a lesser known feature from C++98 is at work, allowing to define a variable inside an if-condition
so that it gets local scope, limited to the statement or block following, much like it is often used for
counting variables in for loops.

42 / 45

http://tbfe.de/
http://microconsult.de/

Boost: Variant
The type boost::variant is similar to boost::any with the important
exception that the set of types must be known at compile time:*

boost::variant<bool,
 std::string,
 double> x; // from a (default initialized) bool
… // (as bool is the first on the list)
x = std::sqrt(2.0); // can be set to any other type from
… // the list, either exactly matching
x = std::string("hello"); // but also applying conversions, if
… // an unambiguous choice can be made,
x = "world"; // like const char * to std::string
x = nullptr; // or nullptr_t to bool (-> false)

Therefore it can be used as replacement for a classic C-style union
augmented with a type tracking member automatically set on
initialization and assignment.

See also Schäling: 14.4

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Effectively this means that there is a closer coupling to the client code as for boost::any, where the set of
types involved of course is also fixed in the source code, but more remotely, i.e. only in the context of
initialization, assignment, and value access.

43 / 45

http://www.boost.org/doc/libs/1_56_0/doc/html/variant.html
http://tbfe.de/
http://microconsult.de/

Boost: Variant (cont.)
A variant can be accessed in several ways:

Specifying the expected type directly, e.g. with boost::get<bool>(x),
with an exception thrown when the content is different.

By trying a type with auto *p = boost::get<bool>(&x), followed by an
explicit or implicit test against the nullptr.*

With a compile time variant of the visitor pattern.

struct process : boost::static_visitor<> {
 void operator()(bool b) const { … } // process content if bool
 void operator()(double d) const { … } // ... if double
 void operator()(const std::string &s) const { … } // ... etc.
};
…
boost::apply_visitor(process(), x);

Note that applying a visitor detects missing cases at compile time!

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: In so far it is similar to boost::any but with slightly different syntax.

44 / 45

http://tbfe.de/
http://microconsult.de/

Boost: Variant (cont.)
In vistor-style there is also the option to fold cases with common source
code into a template, while still handling special cases special:*

struct print : boost::static_visitor<> {
 std::ostream &os;
 print(std::ostream &os_) : os(os_) {
 os.setf(ios::boolalpha);
 }
 template<typename T>
 void operator()(const T &v) const {
 os << v;
 }
 void operator()(const std::string &v) const {
 os << '"' << v << '"';
 }
};
…
boost::apply_visitor(print(std::cout), x);

Missing type cases now might not have the required implementation.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: An overloaded operator<< is already defined for boost::variant but of course without any special-casing.

45 / 45

http://tbfe.de/
http://microconsult.de/

