
C++11 BLWS (Tuesday 2)
A Mix of Useful Things

1. Formatting
2. Boost: I/O-State Saver
3. Boost: format
4. Boost: File System
5. C++11: Chrono
6. Boost: Chrono
7. Boost: Date & Time
8. C++11: Random
9. Boost: Random

Short breaks will be inserted as convenient.

Styled with styling.css by Martin Weitzel 1 / 21

file:///Synopoly/Mwtech/We-Train/MicroConsult/Cpp11BLWS/Presentation/00_topics.html#agenda
file:///Synopoly/Mwtech/We-Train/MicroConsult/Cpp11BLWS/Presentation/styling.css

[!]

Formatting
Compared to C-style printf-format strings C++ output formatting has
changed the concept dramatically. One of the main reasons probably was
to get more type safety as C could provide.

The big obstacle with the C++ design is its stateful stream formatting:*

E.g. switching to a hexadecimal output format will be persistent …

… until switched back to decimal – which introduces the problem:

What if the prior output format wasn't decimal but octal?

Any local change of persistent stream formatting settings
should be undone afterwards, otherwise unwanted effects lurk
around the corner, especially if the program logic has branches

which are rarely taken and therefore not thoroughly tested.

See also Josuttis: 15.7

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Sometimes the fact that Bjarne Stroustrup had chosen to overload the shift operators for I/O is also
heavily criticised, though nowadays few C++ developers seem to share this view and some even call
operator<< the output operation …

2 / 21

http://tbfe.de/
http://microconsult.de/

Sharing Stream Buffers
One lesser known option to avoid resetting the format flags to the original
state is to work with several separate stream that share the same buffer:*

#include <iostream>
#include <iomanip>
int main() {
 std::ostream octout{std::cout.rdbuf()}; octout << std::oct;
 std::ostream decout{std::cout.rdbuf()}; decout << std::dec;
 std::ostream hexout{std::cout.rdbuf()}; hexout << std::hex;
 std::cout << "char oct dex hex\n";
 for (char c{'a'}; c <= 'z'; ++c) {
 const int v{c};
 std::cout << "'" << c << "' ";
 octout << std::setw(3) << v << ' ';
 decout << std::setw(3) << v << ' ';
 hexout << std::setw(3) << v << '\n';
 }
}

See also Josuttis 15.12.2

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: This example demonstrates the principles but is not that clearly showing the advantages, mainly
because lack of space (to make it fit on a single page). To get a better idea how it could improve a
larger program's structure, imagine the output operations were in separate functions, called
intermingled with other output operations that expect a certain formatting state.

3 / 21

http://tbfe.de/
http://microconsult.de/

Saving and Restoring Format Flags
The direct way to restore the original state is to use the member functions
to get and save the current flags, modify formatting as needed, print the
value, and finally restore the saved flags:*

// on ostream 'os' print 'v' in hexadecimal, using uppercase for
// letters A..F, prefixed with 0x (lower case 'x'), with minimum
// field width as set before calling to this function
void print_hex(std::ostream &os, unsigned long long val) {
 const auto usewidth = (os.width()) < 2 ? : os.width() - 2;
 const auto oldflags = os.flags(std::ios::hex
 | std::ios::uppercase
 | std::ios::right);
 const auto oldfill = os.fill('0');
 os << std::setw(0) << "0x" << std::setw(usewidth) << val;
 os.setf(oldflags);
 os.fill(oldfill);
}

Note that setting the minimum field width is not persistent and will
always apply to the next output, then reset to zero.

See also Josuttis 15.7.1

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 4 / 21

http://tbfe.de/
http://microconsult.de/

Boost: I/O-State Saver
The idea behind Boost.IO_State_Savers is to restore flags in a destructor at
scope exit:*

void print_hex(std::ostream &os, unsigned long long val) {
 const auto usewidth = (os.width()) < 2 ? : os.width() - 2;
 boost::io::ios_flags_saver flags(os);
 boost::io::ios_fill_saver fill(os);
 os << std::setw(0) << "0x"
 << std::hex << std::uppercase << std::right
 << std::setfill('0') << std::setw(usewidth) << val;
}

The advantages of this approach become even more visible if control
flow is not as linear as above. Especially if exceptions might occur, no
try-catch-logic must be added.

Using manipulators instead of member function to change the formatting
state is not essential here but makes the code even more compact.

See also BoostLibs: io/doc/ios_state

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Boost.Scope_exit generalizes the idea to arrange beforehand that an arbitrary block of code gets
executed on scope exit via the destructor of a block-local object.

5 / 21

http://www.boost.org/doc/libs/release/libs/io/doc/ios_state.html
http://tbfe.de/
http://microconsult.de/
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/index.html

Boost: format
Boost.Format is the return of C's printf-style output formatting to C++*

The core format string language is much similar to C.

Beyond this there are many extensions, e.g.

the order of values to format must not necessarily be the same as
the order of place holders in the format string.

Extensions for user specified types are possible …

… but even without, any type that has operator<< defined will
work.

Type safety is guaranteed at run time, i.e. an exception will be thrown if
a value to format is not compatible with the placeholder.

See also Schäling: 5.6

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 6 / 21

http://www.boost.org/doc/libs/release/libs/format/doc/format.html
http://tbfe.de/
http://microconsult.de/

Boost: File System
Even with C++11 there is no portable way to access the file system to

search through directories and sub-directories,

determine and change file properties,

delete, rename, link, or copy files.

Boost had tried to tackle this since a long time – with more or less
success – and is currently in its 3rd major release Boost.Filesystem V3.

This file system library may also – via the TR2 Path – become available
with recent Standard C++ versions and is part of Microsoft Visual Studio
2013.

See also Schäling: 9

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: At the time of writing the final state of affairs is not quite clear. A major obstacle through all the years
seems to have been uniting the classic and also modern 8-bit-char API of Unix/Linux (using UTF-8 now,
which the clients – by and large – can handle "content-agnostic") with the 16-bit-char API of MS-Windows
in a portable way …

7 / 21

http://www.boost.org/doc/libs/1_49_0/libs/filesystem/v3/doc/index.htm
http://en.wikipedia.org/wiki/C%2B%2B_Technical_Report_1#Technical_Report_2
http://msdn.microsoft.com/en-us/library/hh874694.aspx
http://tbfe.de/
http://microconsult.de/

(i)

C++11: Chrono
With C++11 a library component for managing date and time was
introduced (beyond what was available for long because of C
compatibility).

As many similar libraries it makes a clear distinction between

durations and

time points.

The feature that makes this library shine is its flexibility with respect to
the usual trade-off between resolution, range, and space requirements of
the underlying type (to store a duration or time point).

The chapter on the C++11 Chrono Library Part from Nicolay
Josuttis Books, referenced above, has also been made available
online here: http://www.informit.com/articles/article.aspx?

p=1881386&seqNum=2

See also Josuttis: 5.7

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 8 / 21

http://www.informit.com/articles/article.aspx?p=1881386&seqNum=2
http://tbfe.de/
http://microconsult.de/

std::chrono – Durations
Though the duration type is fully configurable through a template*, most
programs will probably choose from one of the predefined types that
satisfies their needs for resolution:

std::chrono::nanoseconds at least 64 bit signed
std::chrono::microseconds at least 55 bit signed
std::chrono::milliseconds at least 45 bit signed
std::chrono::seconds at least 35 bit signed
std::chrono::minutes at least 29 bit signed
std::chrono::hours at least 23 bit signed

Duration type conversions to a finer grained type will always happen
automatically, while conversions to coarser grained type require an
std::chrono::duration_cast.

A 64-bit type the minimum requirement for nanosecond resolution – with
the minimum requirement for the other types adapted accordingly –
the minimum range of a duration covers ±500 years.

See also Josuttis: 5.7.2

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: E.g. a duration type could well count in 5/17 microseconds if that matches the resolution of a hardware
timer exactly and allows for precise calculations without any rounding errors or occasional jitter.

9 / 21

http://tbfe.de/
http://microconsult.de/

Duration Example (1)
For a basic use it needs only to be understood that automatic conversion
happen as long as the target duration counts in finer grained units …

#include <chrono>
…
std::chrono::minutes m{22}; // m.count() is 22
std::chrono::seconds s{17}; // s.count() is 17
s += m; // s.count() is 1337 (22*60 + 17)
s *= 100; // s.count() is 133700

… while assignments to coarser grained durations are an error …

m = s; // does NOT compile

… unless an std::chrono::duration_cast is applied:*

m = std::chrono::duration_cast<std::chrono::minutes>(s);
 // m.count() is 2228

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 10 / 21

http://tbfe.de/
http://microconsult.de/

Duration Example (2)

To avoid long namespace prefixes, namespace aliases are handy:*

namespace sc = std::chrono; // abbreviating std::chrono:: to sc::
… // continuing from previous page
sc::hours h = sc::duration_cast<sc::hours>(m); // m.count() is 2228
// auto h = sc::duration_cast<sc::hours>(m);

Finally a useful helper to turn durations into something readable:

std::string to_string(sc::seconds sec) {
 const auto h = sc::duration_cast<sc::hours>(sec);
 const auto m = sc::duration_cast<sc::minutes>(sec-h);
 const auto s = sc::duration_cast<sc::seconds>(sec-h-m);
 return std::to_string(h.count()) + "h"
 + std::to_string(m.count()) + "m"
 + std::to_string(s.count()) + "s";
}
… // continuing from above
… to_string(s) … // returns "37h8m20s"

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: These seems especially useful to abbreviate nested std:: namespaces – like those from the <chrono> –
while keeping a gentle reminder the identifier following is from the standard library.

11 / 21

http://tbfe.de/
http://microconsult.de/

std::chrono – Clocks
A duration (type) combined with an epoch* is a clock that represents a
time point.

Which kind of clocks are supported is basically implementation defined
with the following minimum requirements:

std::chrono::system_clock – represents the usual "wall-clock" or
"calendar date & time" of a computer system;

std::high_resolution_clock – the clock with the best resolution
available (but with a more or less frequent wrap-around);

std::chrono::steady_clock – probably not tied to a specific calendar
date and with the special guarantee that it will only advance.

Only the last allows to reliably determine a real time span as difference
of two time points returned from its static member function now().

See also Josuttis: 5.7.3

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Per definition the epoch of a clock is the time point represented by the duration zero. From its epoch a
clock will reach into the past and into the future, usually symmetrically if an ordinary signed integral or
floating point type is used.

12 / 21

http://tbfe.de/
http://microconsult.de/

Clock Examples (1)

Following are the attributes of std::chrono::system_clock …*

resolution : 1/1000000
value range: -9223372036854775808 .. 9223372036854775807
since epoch: 45+ years
 or: 16581+ days
 or: 397964+ hours
 or: 23877893+ minutes
 or: 1432673591+ seconds
or in ticks: 1432673591377941

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: … determined on the author's system with the helper function below:

 template<typename Clock>
void show_clock() {
 using period = typename Clock::period;
 using limits = std::numeric_limits<typename Clock::rep>;
 std::cout << "resolution : " << period::num << '/' << period::den << '\n';
 std::cout << "value range: " << limits::min() << " .. " << limits::max() << '\n';
 const auto tse = Clock::now().time_since_epoch();
 const auto sse = sc::duration_cast<sc::seconds>(tse).count();
 std::cout << "since epoch: " << sse /60/60/24/365 << "+ years\n";
 std::cout << " or: " << sse /60/60/24 << "+ days\n";
 std::cout << " or: " << sse /60/60 << "+ hours\n";
 std::cout << " or: " << sse /60 << "+ minutes\n";
 std::cout << " or: " << sse << "+ seconds\n";
 std::cout << "or in ticks: " << tse.count() << '\n';
}

13 / 21

http://tbfe.de/
http://microconsult.de/

Clock Examples (2)
Clocks can also be used to determine the time passed between two time
points:*

template<typename TestCode>
void test_timing(unsigned repeat, TestCode testrun) {
 using sc = std::chrono;
 const auto started = sc::high_resolution_clock::now();
 for (auto i = 0; i < repeat; ++i) testrun();
 const auto ended = sc::high_resolution_clock::now();
 const auto delta = ended - started;
 const auto nanosec = sc:duration_cast<sc::nanoseconds>(delta);
 const auto per_run = nanosec.count() / repeat;
 std::cout << nanosec << " ns total for " << repeat << " runs"
 " = " << per_run << " ns per run\n";
}
…
test_timing(100*1000, // repeat 100.000 times ...
 []{
 … // ... this some code fragment
 });

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Note that – as far as shown here – real time is measured, not CPU time, but boost::chrono has also clocks
for measuring CPU time.

14 / 21

http://tbfe.de/
http://microconsult.de/

std::chrono – Operations
Operators are overloaded to support mixed durations and time points:

Operand Type Operation Operand Type Result Type
duration plus or minus duration duration
time point plus or minus duration time point
time point minus time point duration
duration multiplied with plain number duration
duration divided by plain number duration
duration modulo plain number duration
duration divided by duration plain number
duration modulo duration duration

Combinations not listed in the table above result in compile time errors.

For operands with standard types* of different resolution the result will
use the appropriate type with the finer grained resolution.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: When non-standard types are combined the required result type will be calculated accordingly. E.g. to
store the sum of a duration counting in 10/21 seconds and another one counting in 14/15 seconds, a
result type counting in 1/105 seconds will be used.

15 / 21

http://tbfe.de/
http://microconsult.de/

(i)

Boost: Chrono
Boost.Chrono implements the C++11 conformant Chrono classes with
some additions.

Such target the area of measuring CPU-time, i.e.

clocks to which ticks only get added when the CPU is active for the
current process,

usually making a difference between User Time and System Time.

For more information on the option to measure CPU time with
the additional clocks provided by Boost.Chrono see section
Other Clocks in

http://www.boost.org/doc/libs/release/doc/html/chrono/reference.html

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 16 / 21

http://www.boost.org/doc/libs/release/doc/html/chrono.html
http://www.boost.org/doc/libs/release/doc/html/chrono.html
file:///Synopoly/Mwtech/We-Train/MicroConsult/Cpp11BLWS/Presentation/(http://www.boost.org/doc/libs/release/doc/html/chrono/reference.html#chrono.reference.other_clocks)
http://www.boost.org/doc/libs/release/doc/html/chrono/reference.html
http://tbfe.de/
http://microconsult.de/

Boost: Date & Time
Boost.Date_time has little in common with C++11 Chrono, except for
maintaining a similar semantic difference between durations and time
points.

While legacy code using that library will still be around for some years,
on the long run it can be expected that the importance and user base of
this library may decrease and code be updated to use std::chrono.*

See also Schäling: 10

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Note that with [Boost.Chrono] the Chrono Library as standardized with C++11 is now available on the
Boost platform too.

17 / 21

http://www.boost.org/doc/libs/release/doc/html/date_time.html
http://tbfe.de/
http://microconsult.de/

C++11: Random
Compared to C style pseudo random number generation with std::rand,
C++11 has adopted a facility for generating random numbers with given
distributions, but at a price:

The code to role a simple dice isn't any more as easy* as

int throw_dice() { return 1 + std::rand() % 6; }

but requires at least something along the following lines:

int throw_dice() {
 static std::random_device rd;
 static std::mt19937 gen(rd());
 static std::uniform_int_distribution<> dis(1, 6);
 return dis(gen);
}

See also Josuttis: 17.1

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: … and wrong or at least flawed for the following reasons: (1) Some C implementations start to repeat
the "random" sequence as early as after 65534 repetitions and (2) if the range of pseudo-random
numbers (starting with zero) is not evenly divisible by six the chosen way to map the numbers to 1..6 will
slightly favour the lower values.

18 / 21

http://tbfe.de/
http://microconsult.de/

(i)

C++11: Random Number Generators
All random number engines generate the next value by applying the
function call operator (without arguments).*

Some random number generators may be used without distributions if a
uniform distribution over the range of generated values is required, e.g.:

std::mt19937 – uniformly distributed values over a 32 bit range
std::mt19937_64 – uniformly distributed values over a 64 bit range

The C++11 standard also defines an std::random_device which may
either be mapped to a non-deterministic random source or (if not
available) to one of the existing (pseudo-random) sources.

For more informations on the available random number
generators see subsection Random Number Engines in:
http://en.cppreference.com/w/cpp/numeric/random

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: The prefix mt abbreviates the algorithm (Mersenne Twister) and 19937 is the period, after which the
generated numbers start to repeat identically: which is 219937. Or in other words: if such a generator
existed since the big bang and random numbers were extracted with a GHz clock since, until today it
would have generated only numbers from a tiny weeny fraction of its non-repeating range.

19 / 21

http://en.cppreference.com/w/cpp/numeric/random#Random_number_engines
http://en.cppreference.com/w/cpp/numeric/random
http://tbfe.de/
http://microconsult.de/
http://en.wikipedia.org/wiki/Mersenne_Twister

(i)

C++11: Random Number Distributions
All distributions produce the next value by applying the function call
operator with a generator (engine) as parameter.

There are many distributions available – separately from the generator –
of which the Uniform Distribution is probably the one most often used. It is
available as:*

std::uniform_int_distribution
generating integral values in a given range
std::uniform_real_distribution
generating floating point values in a given range
uniform_canonical
generating values between 0..1 with a given precision

For more information on the above and other distributions see
subsection Random Number Distributions in:
http://en.cppreference.com/w/cpp/numeric/random

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Note that contrary to the otherwise asymmetric limits, as commonly used in C and the C++-STL, the
limits specified for distributions are inclusive and symmetric.

20 / 21

http://en.cppreference.com/w/cpp/numeric/random#Random_number_distributions
http://en.cppreference.com/w/cpp/numeric/random
http://tbfe.de/
http://microconsult.de/

Boost: Random
Boost.Random implements the C++11 conformant Random classes with
some additions.

See also Josuttis: 17.1

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 21 / 21

http://www.boost.org/doc/libs/release/doc/html/chrono.html
http://tbfe.de/
http://microconsult.de/

