
C++11 BLWS (Wednesday 1)
Smart Pointers

1. C++11: std::shared_ptr
2. C++11: std::weak_ptr
3. C++11: std::unique_ptr
4. Deprecated std::auto_ptr
5. Boost: Smart Pointer
6. Boost: Scoped Pointer
7. Boost: Scoped Array
8. Boost: Intrusive Pointer
9. Boost: Pointer Container

10. Garbage Collection

Short breaks will be inserted as convenient.

Styled with styling.css by Martin Weitzel 1 / 23

file:///Synopoly/Mwtech/We-Train/MicroConsult/Cpp11BLWS/Presentation/00_topics.html#agenda
file:///Synopoly/Mwtech/We-Train/MicroConsult/Cpp11BLWS/Presentation/styling.css

C++11: std::shared_ptr
With std::shared_ptr C++11 introduced a Smart Pointer type that does
reference counting on its pointee:

When created by its default constructor it points to no object and
creates an owner (reference) count set to zero.

When created and initialized with a bare pointer it assumes it is the
first and only one and creates an owner count set to 1.

When initialized from another of its kind it points to the same object
as the other (if any) and increments the – then shared – owner count.

When assigned from another of its kind it first decrements the owner
count and if that drops to zero, destroys the pointee; then it continues
as if it were initialized from the pointer assigned to it.

When it goes out of scope it also decrements the owner count and if
that drops to zero, destroys the pointee.

See also Josuttis: 5.2.1

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 2 / 23

http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.wikipedia.org/wiki/Smart_pointer
http://tbfe.de/
http://microconsult.de/

Shared Pointee Construction
Per default an std::shared_ptr is initialized with no pointee.

Given

class MyClass { … MyClass(bool, double, std::string); … };

an std::shared_ptr can be initialized to point to a heap allocated object
of type MyClass as follows:*

std::shared_ptr<MyClass> p1{new MyClass(true, 3.14, "hi!")};

Or:

auto p2 = std::make_shared<MyClass>(true, 3.14, "hi!");

The usual recommendation is to prefer the second way over the first as it
can reserve space for MyClass together with the helper object (holding
owner and observer count*) in a single heap allocation.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: The observer count has not yet been introduced; its purpose will become clear when std::weak_ptr gets
explained.

3 / 23

http://tbfe.de/
http://microconsult.de/

Shared Pointer Access
Given an std::shared_ptr<SomeType> p the most typical access to the
pointee is via overloaded operator* or operator->, possibly after a testing
whether there is an object:*

if (p) … *p …; // access whole object
 … p->m …; // access data member m
 … p->f(); // call member function f

Furthermore p.get() returns the address of the pointee (or nullptr), so

it can bridge between std::shared_ptr and legacy code that expects
a native pointer,

at least as long as the recipient is short-lived (compared to p) and

does not assume ownership.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 4 / 23

http://tbfe.de/
http://microconsult.de/

Shared Pointee Destruction
The default way to destruct the pointee (when the owner count drops to
zero) is with delete.

If this is not appropriate a custom deleter can be specified at construction
time:

std::shared_ptr<std::FILE> auto_close_fp{
 std::fopen("somefile", "r"),
 [](FILE *fp) { if (fp) std::fclose(fp); }
};

If the pointee is guaranteed to be valid or a custom deleter with a single
pointer argument of pointee-type that is nullptr-safe* it could be
specified directly:

if (auto fp = fopen("myfile", "w")) {
 std::shared_ptr<std::FILE> auto_close_fp{fp, std::fclose};
 …
}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Implementations of fclose differ in C, some are more robust and check the pointer argument for
(FILE*)0, but according to the C-Standard an invalid pointer causes undefined behavior.

5 / 23

http://tbfe.de/
http://microconsult.de/

C++11: std::weak_ptr
With std::weak_ptr C++ introduced a companion to std::shared_ptr,
mainly used to break cyclic references, which would otherwise defeat one
of the main motivations for using smart pointers as a light-weight, high-
efficiency garbage collector.

An std::weak_ptr acts as observer of a pointee owned by an
std::shared_ptr.

As such it shares and manages an observer count (similar to but
different from the owner count).

A non-zero observer count will not keep the pointee alive if the
owner count drops to zero.

Therefore an std::weak_ptr has no way to access the pointee directly
via overloaded operator* or operator->.

To gain access it has first to obtain an std::shared_ptr – which might
fail but if successful will keep the pointee alive even if all other
owners cease to exist.

See also Josuttis: 5.2.2

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 6 / 23

http://en.cppreference.com/w/cpp/memory/weak_ptr
http://tbfe.de/
http://microconsult.de/

Weak Pointee Usage
Per default an std::weak_ptr is initialized with no pointee.

Given std::shared_ptr<MyClass> p an std::weak_ptr can be initialized to
the pointee referred by p (if any) with:

std::weak_ptr<MyClass> wp{p};

To get access to the pointee an std::shared_ptr must be obtained and
tested:

if (auto sp = wp.lock()) {
 // sp != nullptr
 // now owns the object wp had observed
 … *sp …; // access whole object
 … sp.m …; // access data member m
 … sp->f(); // call member function f
} // sp goes out of scope, if all other owners
 // are gone pointee will get destroyed here

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 7 / 23

http://tbfe.de/
http://microconsult.de/

C++11: std::unique_ptr
An std::unique_ptr is – as the name suggests – the sole owner of its
pointee:

Therefore there can always be only one for each pointee, i.e.

it is not possible to copy-construct or copy-assign an
std::unique_ptr from another one of its kind (yields a compile
time error), but

it is possible to move-construct or move-assign an
std::unique_ptr from another one of its kind.

When an std::unique_ptr goes out of scope or is re-assigned it first
destroys its pointee (if any).

The implementation of std::unique_ptr is very close to native pointers,
i.e. same memory footprint, and also for most operations same
performance, except those that need to care for destruction of a
(previous) pointee.

See also Josuttis: 5.2.5

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 8 / 23

http://en.cppreference.com/w/cpp/memory/unique_ptr
http://tbfe.de/
http://microconsult.de/

(i)

Unique Pointee Construction
Per default an std::unique_ptr is initialized with no pointee.

Given any type T (a built-in type, a class from the standard library, or a
user defined class) an std::unique_ptr can be initialized to point

to a single heap allocated object of this type*

std::unique_ptr<T> ptr{new T};

or to an array of N heap allocated objects:

std::unique_ptr<T[]> arr{new T[N]};

The appropriate deleter is set depending on the template
instantiation argument T or T[].

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Constructor arguments may be supplied as usual but there is no std::make_unique analogous to
std::make_shared until C++14.

9 / 23

http://tbfe.de/
http://microconsult.de/

Unique Pointer Access
Given an std::unique_ptr<SomeType> p the most typical access to the
pointee is via overloaded operator*, operator->, or operator[] if the
pointee is an array, possibly after a testing whether there is an object:*

if (p) … *p …; // access whole object
 … p->m …; // access data member m
 … p->f(); // call member function f
 … p[i] …; // access i-th whole object (0-origin)

Furthermore

p.get() returns the address of the pointee (or nullptr), so it can
bridge between std::unique_ptr and legacy code that expects a
native pointer with shorter lifetime as p;

p.release() is similar but relinquishes ownership of the pointee
which the recipient has to assume then.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 10 / 23

http://tbfe.de/
http://microconsult.de/

Moving Unique Pointers
As unique pointers can not be copied, the (deliberate) use as initial values
for copy constructor arguments is not possible:

extern std::unique_ptr<MyClass> make_MyClass();
…
std::unique_ptr<MyClass> p1 = make_MyClass(); // OK (move c'tor)
std::unique_ptr<MyClass> p2(p1); // ERROR (no copy c'tor exists)

Instead the exsting pointer needs to be moved:

std::unique_ptr<MyClass> p3(std::move(p1)) // OK (p1 nullptr now!)

Same for assignment – move works, copy does not:

p1 = p3; // ERROR (no copy assignment exists)
p1 = make_MyClass(); // OK (move assignment)
p1 = std::move(p3); // OK (p3 nullptr now!)

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 11 / 23

http://tbfe.de/
http://microconsult.de/

[!]

Unique Pointee Destruction
Per default the pointee is destructed with delete or delete[] depending
on the way an std::unique_ptr has been created. Wrong pairing will not
be detected at compile time but cause undefined runtime behaviour.*

{ std::unique_ptr<T[]> ptr{new T};
 …
} // destructor does delete[] on pointee address

Or:

{ std::unique_ptr<T> arr{new[N] T};
 …
} // destructor does delete on pointee address

Pairing plain allocation with array deallocation or array
allocation with plain deallocation has undefined behavior.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: In the best case this will cause an immediate crash with a good error message. But a crash may also
occur much later with a misleading error message (if any) and therefore may be hard to relate to its
original cause, or there may be a memory leak, memory overwritten with bad values, whatever …

12 / 23

http://tbfe.de/
http://microconsult.de/

Deprecated std::auto_ptr
The only Smart Pointer in C++98 was std::auto_ptr, which is deprecated
since C++11.

It had nearly the same behavior (and implementation) as
std::unique_ptr has now, but C++98 had no means to forbid the
copying versions of constructor and assignment while still allowing
the move versions.

Therefore std::auto_ptr had copy-constructor and -assignment which
set their right hand side to NULL, i.e. the auto-pointer used for
initialisation or from which the pointee was assigned lost its pointee.

That came as a surprise to some developers who expected a
"more intelligent" behaviour from a "smart pointer".

Or as Bjarne Stroustrup once put it: With C++11 std::unique_ptr
became what std::auto_ptr in C++98 always should have been but
couldn't, due to lacking proper language support.

See also Josuttis: 5.2.7

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 13 / 23

http://en.wikipedia.org/wiki/Smart_pointer
http://en.cppreference.com/w/cpp/memory/auto_ptr
http://tbfe.de/
http://microconsult.de/

Boost: Smart Pointer
The term Smart Pointer is also used to subsume pointer-like helper classes
in Boost:

boost::shared_ptr:
much like std::shared_ptr (the latter mostly emerged from the
former);

boost::weak_ptr:
much like std::weak_ptr (the latter mostly emerged from the former);

boost::scoped_ptr and boost::scoped_array:
close to std::unique_ptr but in two variants to provide different
destructors to do a plain delete or a delete[] on the pointee.

boost::intrusive_ptr:
similar in purpose to boost::shared_ptr / std::shared_ptr but storing
the rerefence count inside the pointee (which therefore must be
accessible).

See also Schäling: 2.3

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 14 / 23

http://tbfe.de/
http://microconsult.de/

[!]

Boost: Scoped Pointer
A Scoped Pointer considers itself to be the sole owner of a

single object allocated on the heap

and will finally destroy its pointee (if any) when going out of scope or a
new pointee is assigned.

There is no copy-constructor and -assignment, the only way to re-
assign a boost::scoped_ptr is via swap (available globally and as
member function);

Final destruction will use delete, therefore expecting the pointee is a
single object.

If a boost::scoped_ptr is initialized with an address not
returned from new or is pointing to an array of objects returned
from array heap allocation, undefined behaviour will result at

deletion time.

See also Schäling: 2.3

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 15 / 23

http://www.boost.org/doc/libs/release/libs/smart_ptr/scoped_ptr.htm
http://tbfe.de/
http://microconsult.de/

[!]

Boost: Scoped Array
A Scoped Array considers itself to be the sole owner of

an array of objects allocated on the heap

and will finally destroy its pointee (if any) when it goes out of scope or a
new pointee is assigned.

There is no copy-constructor and -assignment, the only way to re-
assign a boost::scoped_array is via swap (available globally and as
member function);

Final destruction will use delete[], therefore expecting the pointee is
an array of objects.

If a boost::scoped_array is initialized with an address not
returned from new or pointing to a single object returned from
plain heap allocation, undefined behaviour will result at

deletion time.

See also Schäling: 2.4

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 16 / 23

http://www.boost.org/doc/libs/release/libs/smart_ptr/scoped_array.htm
http://tbfe.de/
http://microconsult.de/

Boost: Intrusive Pointer
An Intrusive Pointer is much like a reference counted boost::shared_ptr
or std::shared_ptr.

Instead of allocating reference counts separately it expects two global
functions overladed for pointers to the pointee's type:

intrusive_ptr_add_ref – called when a new referrer for the
pointee is added.

intrusive_ptr_release – called when an existing referrer of the
pointee gets re-assigned or goes out of scope.

Furthermore there is a class boost::intrusive_ref_counter from
which the pointee's class may be derived.*

Boost recommends in case of doubt to prefer ordinary shared pointers
and to avoid using intrusive pointers without good reason.

See also Schäling: 2.5

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Of course given its source is written from scratch or at least available and can be modified.

17 / 23

http://www.boost.org/doc/libs/release/libs/smart_ptr/intrusive_ptr.html
http://tbfe.de/
http://microconsult.de/

Intrusive Pointer Example
To make MyClass usable with intrusive pointers it can be written as:*

class MyClass :
 public boost::intrusive_ref_counter<
 MyClass,
 boost::thread_unsafe_counter
 > { … };

Or if it should be usable in a multi-threaded environment:

class MyClass
 : public boost::intrusive_ref_counter<
 MyClass,
 boost::thread_safe_counter
 > { … };

Then there can be intrusive pointers of MyClass:

boost::intrusive_ptr<MyClass> p{new MyClass(…)};

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: The second template argument may be omitted as it defaults to boost::thread_unsafe_counter.

18 / 23

http://tbfe.de/
http://microconsult.de/

[!]

Boost: Pointer Container
A number of [Pointer Containers] has been made available by boost,
paralleling the STL containers with a pointer version that

omits the pointer syntax at instantiation,

adds one level of dereferencing to each member access, and

considers its elements as pointers owning the memory pointed to.

While the former two are more a matter of convenience (see example on
next slide), the last one has a severe semantical implication:

If the container goes out of scope it deletes all the pointees of its (still)
contained elements.*

Storing non-owning pointers or pointers that do not even point
to heap-allocated memory in a pointer container will cause
undefined behaviour when or after the container goes out of

scope.

See also Schäling: 2.6

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: This effect can alternatively be achieved by storing std::unique_ptr-s in an ordinary container.

19 / 23

http://tbfe.de/
http://microconsult.de/

Pointer Container Example
Storing and later on processing a boost::ptr_vector:*

boost::ptr_vector<MyClass> v;
…
// fill in some content (probably in a loop):
… v.push_back(new MyClass(…));

// process later (or maybe in a different thread):
while (!v.empty()) {
 … v.back() …; // access MyClass as a whole
 … v.back().m …; // access MyClass data member
 … v.back().f(); // call MyClass member function
 v.pop_back();
}

In case the processing loop is not reached or left before the content is
fully processed, the pointer container destructor will call delete for
the pointers still contained, avoiding a memory leak.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: If a pointer container actually gets filled and processed concurrently as suggested by the comment in
the example, mutexes or other synchronization techniques must be added as modifying operations are
not thread-safe by themselves.

20 / 23

http://tbfe.de/
http://microconsult.de/

Pointer Container Substitute
Storing and later on processing a container of custodial pointers:*

std::vector<std::unique_ptr<MyClass>> v;
…
// fill in some content (probably in a loop):
… v.emplace_back(new MyClass(…));

// process later (or maybe in a different thread):
while (!v.empty()) {
 … *(v.back()) … // access MyClass as a whole
 … v.back()->m … // access MyClass data member
 … v.back()->f() … // call MyClass member function
 v.pop_back();
}

In case the processing loop is not reached or left before the content is
fully processed, the std::unique_ptr destructors will call delete for
their pointees, avoiding a memory leak.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: If an STL container actually gets filled and processed concurrently as suggested by the comment in the
example, mutexes or other synchronization techniques must be added as modifying operations are not
thread-safe by themselves.

21 / 23

http://tbfe.de/
http://microconsult.de/

Garbage Collection
There is no garbage collection in C++ because of a specific difficulty:

An address once obtained from new may not be visible in any
memory location capable of holding a heap address, instead it

1. may have been modified by address arithmetic … which will of
course be reverted before the delete takes place;

2. may be temporarily stored in an integral type* … and will of
course be restored to a pointer of appropriate type before the
delete takes place.

Both are not a sign of bad programming style but have some valid uses
in the C and C++ code base written in the last 35 years, so they cannot
be easily ruled out by a new language standard.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: C/C++ even guarantees that when an integral type of sufficient size is used as temporary to store a
pointer, after assigning the content back to the original pointer type the memory location pointed to will
not have changed … which by no means says that the bit patterns stays the same all the time!

22 / 23

http://tbfe.de/
http://microconsult.de/

C++11: Garbage Collection API
C++11 has defined an Garbage Collection ABI to enable Interested Third
Parties to supply garbage collection as add-on library.*

Mainly the ABI allows to say (put colloquially):

The object at this address I name to you may appear not to
be any longer in use.

You may not find it in any memory location capable of holding a
heap pointer. Nevertheless be assured: it is still in use, so do not
garbage collect it, I'll take up responsibility and return the
reserved space in due course when its really not in use any more.

In this memory area I name to you, you may find storage
cells looking like pointers to heap memory, but they aren't.

So, in case there is any memory pending to be freed and its only
use appears to be from inside this area, feel free to go ahead and
garbage collect that stuff.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: It will surely be interesting to watch such efforts and whether any third-party garbage collector for C++
gets into wide-spread use. If so, then probably rather for new software, not for large amounts of legacy
code (including libraries), and maybe only with additional support by compiler warnings.

23 / 23

https://isocpp.org/wiki/faq/cpp11-library#gc-abi
http://tbfe.de/
http://microconsult.de/

