
C++11 BLWS (Thursday 1)
Input and Output / Concurrency Basics

1. I/O-Streams (Recap)
2. The Buffer Interface
3. Boost: Iostreams
4. Boost: Serialization
5. C++11: Concurrency Basics
6. Boost: Threads Library
7. Boost: Asio

Short breaks will be inserted as convenient.

Styled with styling.css by Martin Weitzel 1 / 57

file:///Synopoly/Mwtech/We-Train/MicroConsult/Cpp11BLWS/Presentation/00_topics.html#agenda
file:///Synopoly/Mwtech/We-Train/MicroConsult/Cpp11BLWS/Presentation/styling.css

I/O-Streams (Recap)
The overall design of C++ I/O-streams is founded on seven classes further
explained on the next slides.

Actually these classes are only type definitions of some more basic
templates that parametrize various aspects like the character type and
traits of the streams.

For readability and as is sufficient to gain a basic understanding of the
architecture, the following treats

std::ios, std::istream … etc. … to std::ostringstream

instantiating the basic templates (std::basic_ios etc.) for plain
characters as if they were the classes in question, not just type definitions
which are similarly provided for wide characters:

std::wios, std::wistream … etc. … to std::wostringstream

See also Josuttis: 15.1

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 2 / 57

http://tbfe.de/
http://microconsult.de/

Class std::ios
This is the base class* of

std::istream and

std::ostream

centralizing a number of

type definitions – like for the underlying character type
(ios::char_type) or seeking in stream,

enumerations – like ios::fmtflags for global formatting flags
(ios::fixed, ios::scientific, …) or the stream states, and

common member data and functions – like for accessing and
modifying formatting options (std::ios::flags, std::ios::fill, …) or
whether state changes should be notified by throwing stream
exceptions.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: For technical reasons a part of what is listed here is actually defined in an std:ios base class
std::ios_base. To get a basic understanding for the C++ I/O-stream design this is a detail that need not
be further explored.

3 / 57

http://tbfe.de/
http://microconsult.de/

Class std::istream
This class is derived from std::ios with the main purpose to pool the
stream extraction operations (aka. input), e.g. read*

single characters (get with various overloads),

lines of text into an std::string (getline),

blocks of given length (read, readsome), or

formatted input (operator>> for type specific conversion from text).

Whenever some function is parametrized on a stream input source
std::istream& is usually the best choice for the argument type.

Choosing std::ifstream or std::istringstream instead would limit the
selection of possible input sources at the callers side.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Not everything named below is a member – there are also global functions with an std::istream
argument or overloads for operator>> with a left-hand-side operand of type std::istream.

4 / 57

http://tbfe.de/
http://microconsult.de/

Class std::ostream
This class is derived from std::ios with the main purpose to pool the
stream insertion operations (aka. output), e.g. write

single characters (put with various overloads),*

blocks of given length (write, writesome), or

formatted output (operator<< for type specific conversion to text).

Whenever some function is parametrized on a stream output sink
std::ostream& is usually the best choice for the argument type.

Choosing std::ofstream or std::ostringstream instead would limit the
selection of possible output sinks at the callers side.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: There is no putline counterpart to getline but operator<< is (of course) defined and fully sufficient for
output of std::string-s.

5 / 57

http://tbfe.de/
http://microconsult.de/

File-Stream Classes
The file stream classes (accessible via the header <fstream>)

std::ifstream and

std::ofstream

are in turn derived from the base std::ios.

Via an appropriate stream buffer an instance of any of these classes
connects to a classic file as sink or source for the actual input and
output.

Besides files residing as data container in some (non-volatile) storage
space, the term classic file here includes also abstractions like stream
sockets.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Or even more generally in Unix/Linux: everything that has an entry in the file system (/dev/…, /sys/…,
/proc/…), i.e. serial or parallel ports, raw disks, information on processes, connected peripherals …).

6 / 57

http://tbfe.de/
http://microconsult.de/

String-Stream Classes
The string stream classes (accessible via the header <sstream>*)

std::istringstream and

std::ostringstream

are in turn derived from the base std::ios.

Via an appropriate stream buffer an instance of any of these classes can
connect to an std::string as sink or source for the actual input and
output.

In case of std::ostringstream space for the character sequence stored is
allocated dynamically – and fully transparent to the client.

Generally the amount of data to be stored in a string stream is only
limited by the main memory available to a process and may be even more
as physically installed RAM …

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Note that the header discussed here is spelled <sstream>, not <stringstream> and not <strstream>. In fact,
the latter is the name of an earlier, similar interface (based on character arrays instead of std::strings)
which is deprecated since C++98.

7 / 57

http://tbfe.de/
http://microconsult.de/

[!]

Readable, Writeable, and Read-Writeable
Streams
The previous slides concentrated on streams with a specific purpose:

std::ifstream and std::istringstream as data source

std::ofstream and std::ostringstream as data sink

There is also the combination, i.e.

std::fstream allowing input and output to the same file, and

std::stringstream allowing input and output to the same
std::string.

If there is only one direction into which the data moves, these need not be
used and should be second choice.

Otherwise you need to understand the underlying buffer
management to guide your decisions if the buffer needs to be
flushed when switching between input and output.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 8 / 57

http://tbfe.de/
http://microconsult.de/

Seeking in Streams
At the heart of the I/O-stream model are the seek positions, working much
like an "invisible marker" just before the character that is next to be
processed (on input) or overwritten (on output).

These are independently managed for input and output and also called:

get position accessed with tellg and eventually modified with seekg;

put position accessed with tellp and eventually modified with seekp.

The positions are measured in characters* relative to the begin of the file
by tellg and tellp, and can be set with seekg and seekp in three ways:

relative to the begin of the file,

relative to the (current) end of the file, or

relative to the current position.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: The actual character type will of course be wchar_t for the wide streams (wistream, wostream, etc.) but it
needs to be understood that these are not necessarily the "user perceived characters", nor need there
be a 1:1 correspondence to "code points" of a character set as UTF-32, as both – UTF-8 (based on 8 bit
units) and UTF-16 (based on 16 bit units) – use a variable length encoding scheme.

9 / 57

http://tbfe.de/
http://microconsult.de/

Stream States
An input or output stream can generally switch between a number of
states:

Technically these are not mutually exclusive (as the term "state" might
suggest) but there are just three flags that may be set independently:

std::ios::eofbit – testable with the member function eof()
set when the stream has advanced over its last character;*

std::ios::failbit – testable with the member function fail() some
"soft error" has occurred and a retry may make sense;

std::ios::badbit – testable with the member function bad() some
"hard error" has occurred (it's unlikely a retry will recover).

When none of the above flags is set the stream is said to be in good
state – testable with the member function good().

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Testing this state makes sense mostly for data sources but in case of a data sink it may be set too if
there is no more room on the device where the output is to be stored, though due to buffered output it
can rather be expected that the stream enters the fail state when the buffer is written.

10 / 57

http://tbfe.de/
http://microconsult.de/

Implicit Stream State Switching
For one, stream states may be switched during I/O taking place, according
to the following rules:

When stream extraction has moved over the last character – the
physical end of the file for an external file or the last character on an
std::string- the std::ios::eofbit flag will be set.

When there is a problem converting the characters read while
processing formatted input the std::ios::failbit flag will be set.

When there is any other severe problem the std::ios::badbit flag will
be set.

Once any of the above flags is set, the stream will temporarily cease to
be usable for nearly most any operation.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 11 / 57

http://tbfe.de/
http://microconsult.de/

[!]

Explicit Stream State Switching
The only operations carried out while a stream is not in the good state are:

clear() – clear all state flags;*

close() – release connection to data sink or source.

Note that clearing the state flags does what it says: the state flags will be
cleared, nothing less, nothing more.

Especially the get position will not change.

If the root of the problem was a formatting error – e.g. it was tried to read
an int while the next input character was a non-digit – that character
must be skipped somehow.

It is a common error of novices to either forget the above or to
overlook the fact that all the error flags need to be cleared
before advancing the get position.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Any argument specified will set(!!) the flags named by it, so strm.clear(std::ios::fail) may be part of
the implementation of operator>> for a user type to indicate a formatting error.

12 / 57

http://tbfe.de/
http://microconsult.de/

Stream Exceptions
Optionally an exception may be thrown when a stream sets any of its
state flags*

Individually for

each stream instance and

each state flag

it can be chosen that an exception is thrown whenever the state bit is set.

In addition this causes an exception to be thrown by any stream
operation that would otherwise be silently ignored (outside the good
state).

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: The stream interface with its implicit and explicit state switching was defined in a time when C++ not
yet had exceptions. For backward compatibility the default behavior is still to ignore I/O operations for
streams that are not in the good state. For new software developments this makes less sense as it
delays the impact of problems and therefore impedes error analysis.

13 / 57

http://tbfe.de/
http://microconsult.de/

Stream Exceptions Example

Read float values from standard input and calculate sum:*

cin.exceptions(std::ios::failbit | std::ios::badbit);
double sum{0.0};
bool giveup{false};
do {
 try {
 double val;
 while (cin >> val)
 sum += val;
 }
 catch (std::ios_base::failure &e) {
 if (cin.bad()) {
 giveup = true;
 cerr << "giving up before eof is reached" << endl;
 }
 else if (!cin.eof()) {
 cin.clear();
 cerr << "char ignored: " << char(cin.get()) << endl;
 }
 }
} while (!cin.eof() && !giveup);

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Necessary includes and namespace directives assumed.

14 / 57

http://tbfe.de/
http://microconsult.de/

The Buffer Interface
One of the main purposes of the stream classes is to make input and
output efficient, especially if the actual source or sink is a classic file:

Accessing the external store will usually happen in large chunks …

… while the program logic can deal with the stream content in
whatever portions are convenient.

Usually buffering and the logic involved is to the most part transparent
to a client (program) using C++ I/O-streams.

But there is also the option to take over control by implementing new
buffer classes for a specific purpose.* Applied wisely, this approach

can lead to a hight degree of encapsulation

and may also promote the potential for reuse.

See also Josuttis: 15.13

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Such may als be derived from std::filebuf or std::stringbuf if refined file streams or string streams are
necessary.

15 / 57

http://tbfe.de/
http://microconsult.de/

(i)

Buffers for Input Streams
The minimum requirement for implementing a buffer to be used with a
special kind of input stream is to

implement the member function underflow,

which will be called whenever (more) input needs to be retrieved from
the physical source.

Especially there are no other member functions necessary, though such
may help to improve performance.

Actually the above also assumes the default – that is not to do any input
buffering but forward each character immediately – though setting up a
real input buffer is straight forward and not so much of an effort.*

Implementing input buffers as reusable components is
particularly easy with Boost.Iostreams.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Assuming a base class is used that takes care of the nitty-gritty details, like mandatory type definitions
and default implementations for optional member functions.

16 / 57

http://tbfe.de/
http://microconsult.de/

(i)

Buffers for Output Streams
The minimum requirement for implementing a buffer to be used with a
special kind of output stream is to

implement the member function overflow,

which will be called whenever there is no more room to buffer the
output destined for the physical sink.

Especially there are no other member functions necessary, though such
may help to improve performance.

Actually the above also assumes the default – that is not to do any output
buffering but forward each character immediately – though setting up a
real output buffer is usually straight forward and not so much of an effort.*

Implementing output buffers as reusable components is
particularly easy with Boost.Iostreams.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Assuming a base class is used that takes care of the nitty-gritty details, like mandatory type definitions
and default implementations for optional member functions.

17 / 57

http://tbfe.de/
http://microconsult.de/

Boost: Iostreams
Boost.Iostream is particularly helpful to implement

specialized stream buffers for input and output as reusable
components

which may be dynamically configured depending on what is needed.

To some degree the approach is similar to pipelining some input for or
output of an application through standard programs.

The only difference is that everything happens internally, but the idea of
combining small modules of which

each does a single, simple thing well

is exactly the same.*

See also iostreams/doc/index

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: If all what has to be done can be expressed with input and output modules only, Boost.Iostream even
contains a small helper that can replace a main program, feeding the input from one stream as output
to the other one.

18 / 57

http://www.boost.org/doc/libs/release/libs/iostreams/doc/index.html
http://tbfe.de/
http://microconsult.de/

Input Preprocessing
As an example may serve an idea for components which help to parse
Unix-style configuration files.*

There could be

one module to strip empty lines and comments and

another module to join continuation lines,

both of which are near to trivial and hence easy to develop and test.

An independent example were a module that recognizes and
appropriately replace XML character encodings (like '&xx;').

In any case, from the viewpoint of the actual application just plain text
is read from an input stream.

See also iostreams/doc/index

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Configuration file syntax in Unix was (and still is in Linux) often "ad hoc" but some common style has
emerged over time: (1) empty line are not significant, (2) comments can be embedded in lines starting
with a hash-sign ('#'), and (3) long lines maybe broken into parts by ending lines that continue with a
backslash ('\').

19 / 57

http://tbfe.de/
http://microconsult.de/

Output Postprocessing
As examples may serve components caring for some normalization in a
postprocessing step, that may be dynamically configured from a library
with reusable components.

Recognize and appropriately replace non-ASCII characters with the
equivalent XML encoding (i.e. '&xx;').*

Format simple plain text by breaking long lines at white space if a
certain line length would otherwise be exceeded.

As before but automatically insert a line continuation convention (like
ending lines to be continue with a backslash).

Prefix each line with its line number.

In any case, from the viewpoint of the actual application just plain text
is written to an output stream.

See also iostreams/doc/index

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: As the mechanism is generic to stream buffers, such modules may also be applied in a way that the
output is caught in a string, so that – with the same module – only plain text parts of a web page could
be sanitized by replacing '<' with '<' etc. but not for the actual HTML tags.

20 / 57

http://tbfe.de/
http://microconsult.de/

Boost: Serialization
With Boost.Serialization object instances may be saved to persistent
storage at some point to be restored later.

This includes instances referring to each other via pointers or
references:
The mechanism takes care for "duplicates" if in a network of objects a
particular instance is reachable via more than one path.

The obvious applications are:

Save the last state to continue the next run of an application where
the previous left off.

Checkpoint an application to provide a roll-back facility via the
snapshots taken, or reconstruct history.

The degree to which this can work non-intrusive is limited, especially
compared to other languages with much richer support for introspection.*

See also Schäling: 11

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: E.g. Java has a reflection interface that is close to perfect … but on the other hand requires a lot of
meta-information to be stored – even if a program never makes use of serialization.

21 / 57

http://www.boost.org/doc/libs/release/libs/serialization/doc/index.html
http://tbfe.de/
http://microconsult.de/

(i)

C++11: Concurrency Basics
With C++11 support for multi-threading was introduced.*

Parallelizing Independent Tasks
Synchronisation with Mutexes
One-Time Execution
Messaging with Condition Variables
Atomic Operations
Direct Use of Threads
Native Threading Model Handles
Concurrency Recommendations

This part of the presentation were written with the intent to give an
overview of the provided features only, they are by far not exhaustive!

For more information on concurrency support in C++11 see:
http://en.cppreference.com/w/cpp/atomic, and
http://en.cppreference.com/w/cpp/language/memory_model

See also Josuttis: 18.1

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: At first glance concurrency features may appear "as just some more library classes and functions". But
beyond the hood, and especially in the area of allowed optimisations and to provide Cache Coherence
on modern multi-core CPUs, concurrency is closely intertwined with code generation issues.

22 / 57

http://en.cppreference.com/w/cpp/atomic
http://en.cppreference.com/w/cpp/language/memory_model
http://tbfe.de/
http://microconsult.de/
http://en.wikipedia.org/wiki/Cache_coherence

(i)

Parallelizing Independent Tasks
For complex tasks that can be split into independent parts, concurrency
and scalability to multiple cores can be easily achieved by following a
simple recipe:

1. Separate the task into a number of different functions (or calls of the
same function with different arguments).

2. Run each such function by handing it over to std::async, storing the
future that is returned (easiest in an auto-typed variable).

3. Fetch (and combine) the results by calling the member function get
for each future.

That way all the functions may run concurrently and the last step
synchronizes by waiting for completion.

For more information on parallelizing independent task that
way see: http://en.cppreference.com/w/cpp/thread/async

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Technically the return value of std::async is an std::future but as this is a template and the type is
usually somewhat different to spell out, most usages of std::async store the result in an auto-typed
variable.

23 / 57

http://en.cppreference.com/w/cpp/thread/async
http://tbfe.de/
http://microconsult.de/

(i)

Foundation: Futures and Promises
The foundation on which parallelizing tasks is build are Futures and
Promises.

These need not be fully understood to apply the API (exemplified on the
next pages), but may help to understand the basic machinery:

A future is the concrete handle which a client can use to fetch the
result, presumably made available by a different thread of execution.

A promise is a helper class which may be used in a separate thread to
make a result available for a client.

For more information on promises and futures see:
http://en.cppreference.com/w/cpp/thread/future
http://en.cppreference.com/w/cpp/thread/promise

http://en.cppreference.com/w/cpp/thread/packaged_task

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 24 / 57

http://en.wikipedia.org/wiki/Futures_and_promises
http://en.cppreference.com/w/cpp/thread/future
http://en.cppreference.com/w/cpp/thread/promise
http://en.cppreference.com/w/cpp/thread/packaged_task
http://tbfe.de/
http://microconsult.de/

Parallelizing Example
The following example calculates the sum of the first N elements in data
by splitting the work of std::accumulate, into two separate function calls,
that may run concurrently:*

// calculate sum of first N values in data
//
long long sum(const int data[], std::size_t N) {
 auto lower_part_sum = std::async(
 [=]{ return std::accumulate(&data[0], &data[N/2], 0LL); }
);
 auto upper_part_sum = std::async(
 [=]{ return std::accumulate(&data[N/2], &data[N], 0LL); }
);
 return lower_part_sum.get()
 + upper_part_sum.get();
}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Note the use of lambdas above – the actual call to std::accumulate will only happen when the lambda
gets executed! A similar effect can be achieved as follows:

 // preparing the callable for std::async with std::bind:
… std::async(std::bind(std::accumulate, &data[0], &data[N/2], 0LL)) …
… std::async(std::bind(std::accumulate, &data[N/2], &data[N], 0LL)) …

25 / 57

http://tbfe.de/
http://microconsult.de/

[!]

Default Launch Policy
The default behavior is that the systems decides on its own whether an
asynchronously started task is run concurrently.*

Using std::async without an explicit launch policy

is just a hint that it is acceptable to run a callable unit of code
concurrently,

as long as it has finished (and possibly returned a result) latest when
the get-call returns, which has bee invoked on the std::future.

Be sure not to use the default launch policy but specify
concurrent execution explicitly (see next page) whenever it is
essential that two callable run concurrently.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: It is a well known effect that too many parallel threads of execution may rather degrade performance.
Especially if threads are CPU bound, it makes little sense to have more threads as cores. Therefore the
standard gives considerable freedom to the implementation, which might implement concurrency with
std::async with a thread pool and turn to synchronous execution or lazy evaluation at a certain
threshold.

26 / 57

http://tbfe.de/
http://microconsult.de/

(i)

Explicit Launch Policies
There is a second version of std::async which has a first argument to
specify the launch strategy.

The standard defines two values:

std::launch::async
if not set the callable will not run on its own thread;*

std::launch::deferred of set the callable will not be called before
get is invoked.

For more information on launch policies see:
http://en.cppreference.com/w/cpp/thread/launch

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: One case in which this setting this flag may make sense is to test the program logic independent from
possible problems created through race conditions or deadlocks, originating from dependencies
between the "independent tasks", that had been overlooked.

27 / 57

http://en.cppreference.com/w/cpp/thread/launch
http://tbfe.de/
http://microconsult.de/

Catching Exceptions
If the callable started via std::async throws an exception, it will appear as
if it were thrown from the call to get.

Hence, if the asynchronously run task may throw, fetching the result
should be done in a try block:

auto task1 = std::async(…); // whatever-is-to-do (and may throw)
auto task2 = std::async(…); // whatelse-is-to-do (and may throw)
…
try { … task1.get() … }
} catch (…) { // what may be thrown from whatever-is-to-do
 … // handle the case that whatever-is-to-do threw
}
try { … task2.get() … }
} catch (…) { // what may be thrown from whatelse-is-to-do
 … // handle the case that whatelse-is-to-do threw
}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 28 / 57

http://tbfe.de/
http://microconsult.de/

[!]

Communication between Independent Tasks
First of all: If the need arises to communicate between independent tasks,
this should be taken as a strong warning that such tasks are actually
not independent.

If parallel tasks are not independent, further needs follow
quickly with respect to synchronize access to shared data …
with all the further intricacies following from this.*

Nevertheless there is one common case that requires a simple form of
communication between otherwise independent tasks.

If there are several tasks working towards a common goal
of which one fails, making the goal unattainable,
the others should not waste CPU-time needlessly.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: In other words: Pandora's proverbial can of worms opens quickly and widely …

29 / 57

http://tbfe.de/
http://microconsult.de/

The workers could look about so …

void foo (… , bool &die) {
 …
 for (…) {
 if (die) return;
 …
 … // some complex
 … // algorithm
 …
 // may fail here
 if (…) {
 die = true;
 return;
 }
 }
}

… being run by that code:

bool die = false;
auto task1 = std::async(
 [&die]{ foo(… , die); }
);
auto task2 = std::async(
 [&die]{ foo(… , die); }
);
…
… task1.get() …
… task2.get() …
…
if (die) {
 // goal not reached
 …
}

Communicate Failure between Concurrent Tasks
A basic design that communicates failure between partners working
towards a common goal is outlined in the following example.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: To keep this code simple it just returns in case of problems, though it requires only a few changes if
problems should be communicated to the caller via exceptions.

30 / 57

http://tbfe.de/
http://microconsult.de/

Synchronisation with Mutexes
The word Mutex abbreviates Mutual Exclusion and describe the basic
purpose of the feature.

Allow only one thread to enter a Critical Section, typically non-
atomically executed sequence of statements
which temporarily invalidate an Class Invariant, or
in other ways accesses a resource not designed for shared use.

In general, mutexes have at least two operations* for

lock-ing and

unlock-ing,

but frequently provide additional features to make their practical use
more convenient or less error prone.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Though the operations may not be spelled exactly lock and unlock … (especially as mutexes are
somewhat related to [Semaphores], which originally named their lock (-like) acquire operation P and
their unlock (-like) release operation V.

31 / 57

http://en.wikipedia.org/wiki/Critical_section
http://en.wikipedia.org/wiki/Class_invariant
http://tbfe.de/
http://microconsult.de/

Mutex Example (1)

The following example calculates one table from another one:*

template<typename In, typename Out, typename Transformation>
void worker(const In data[], std::size_t data_size,
 Out result[], std::size_t &total_progress,
 Transformation func) {
 static std::mutex critical_section;
 while (total_progress < data_size) {
 critical_section.lock();
 constexpr auto chunks = std::size_t{100};
 const auto beg = total_progress;
 const auto end = ((data_size - total_progress) > chunks)
 ? total_progress += chunks
 : total_progress = data_size;
 critical_section.unlock();
 std::transform(&data[beg], &data[end], &result[beg], func);
 }
}

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: The work is shared by any number of worker task run concurrently, each fetches and transforms a fixed
number of values. This can be advantageous to splitting the work by calculating fixed-size regions of
the table in advance, if the transformation function has a largely varying runtime depending on the
argument value.

32 / 57

http://tbfe.de/
http://microconsult.de/

Mutex Example (2)
Assuming the transformation is to calculate square roots and there are
two arrays of size N, say

data (filled with values to transform), and
sqrts to store the results

workers may be created (to be handed over to std::async) as follows:*

std::size_t processed_count = 0;
auto worker_task =
 [&]() { worker(data, N, sqrts, processed_count,
 [](double e) { return std::sqrt(e); });
 };

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Given the above, a particular nifty way to create and run workers were:

 // assuming NCORES holds the number of cores to use by workers:
std::array<std::future<void>, NCORES> workers;
for (auto &w : workers)
 w = std::async(worker_task);
for (auto &w : workers)
 try { w.get(); } catch (...) {}

33 / 57

http://tbfe.de/
http://microconsult.de/

(i)

Mutexes and RAII
As the mutex operations lock and unlock need to come correctly paired,
they make a good candidate to apply a technique called RAII.*

It works by creating a wrapper class, executing

the acquiring operation (or lock-ing in this case) in its constructor, and
the releasing operation (or unlock-ing) in its destructor.

Such helper classes are available in C++11 std::lock_guard.

The big advantage is that unlocking the mutex is guaranteed for code
blocks defining a RAII-style (guard) object locally, no matter whether
control flow reached its end, or by break, return, or some exception.

For more information on the RAII-style use of mutexes see:
http://en.cppreference.com/w/cpp/thread/lock_guard

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: This TLA is an abbreviation Bjarne Stroustrup once coined for Resource Acquisition is Initialisation. In a
recent interview Stroustrup revealed that he is not particularly happy with the term he once choose. But
to change it would require to travel back in a time machine and suggest something more appropriate
to him, as today the term RAII is in much too widespread use to be replaced by something else.

34 / 57

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://en.cppreference.com/w/cpp/thread/lock_guard
http://tbfe.de/
http://microconsult.de/
http://www.catb.org/jargon/html/T/TLA.html

(i)

Mutex Variants
Mutexes in C++11 come in a number of flavours, which controlling their
behaviour with respect to the following details:

Whether or not some thread that already locked a mutex may lock it
once more (and needs to release it as often).

Whether or not a thread waits if it finds a mutex locked by some other
thread, and in the latter case until when (clock-based time point) or or
how long (duration) it waits.

For all mutex variants there are also variants of RAII-style lock guards.

For more information on the different variants of mutexes and
RAII-style wrappers see:
http://en.cppreference.com/w/cpp/thread/recursive_mutex

http://en.cppreference.com/w/cpp/thread/timed_mutex
http://en.cppreference.com/w/cpp/thread/recursive_timed_mutex and
http://en.cppreference.com/w/cpp/thread/unique_lock

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 35 / 57

http://en.cppreference.com/w/cpp/thread/recursive_mutex
http://en.cppreference.com/w/cpp/thread/timed_mutex
http://en.cppreference.com/w/cpp/thread/recursive_timed_mutex
http://en.cppreference.com/w/cpp/thread/unique_lock
http://tbfe.de/
http://microconsult.de/

(i)

C++14: Upgradable Locks
C++14 added the class std::shared_lock, supporting a frequent
necessity:*

Multiple Reader/Single Write Locking Schemes

Any number of (reader) threads may successfully shared_lock that
kind of mutex …
… but only one single (writer) thread is allowed to actually lock it
(unshared).

C++14 also provides a RAII-style wrapper for shared locking.

For more information on shared locking see:
http://en.cppreference.com/w/cpp/thread/shared_timed_mutex
and http://en.cppreference.com/w/cpp/thread/shared_lock

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Note that the terms "reader" and "writer" indicates the typical use of that kind of mutex, assuming that it
is sufficient for readers to obtain the lock shared, as it guarantees the invariants hold but no
modifications are made, while writers will need to temporarily break invariants.

36 / 57

http://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
http://en.cppreference.com/w/cpp/thread/shared_timed_mutex
http://en.cppreference.com/w/cpp/thread/shared_lock
http://tbfe.de/
http://microconsult.de/

(i)

Defeating Deadlocks Caused by Mutex-Locking
As a potentially blocking mechanism mutexes are famous for creating
deadlocks, i.e

in the situation where two resources A and B are required,
one thread acquires these in the order first A, then B and
another thread acquires these in the order first B, then A.*

The obvious counter measure is to acquire locks always in the same order,
as achievable with std::lock and std::try_lock.

For more information on locking several mutexes semantically
atomic (i.e. without creating the potential for dead-locks) see:
http://en.cppreference.com/w/cpp/thread/lock and

http://en.cppreference.com/w/cpp/thread/try_lock

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: In practice, the potential for deadlocks is often not as obvious as in this example but much more
intricate and close to impossible to spot, even in scrutinising code reviews. So, if (accidental) deadlocks
cannot be avoided, sometimes a "self-healing" strategy is applied that works follows:
If more than one lock needs to be acquired, acquire at least all others with setting a time-
out. If that hits, release all locks acquired so far, delay for some small amount of time (usually
determined in a window with some slight randomness), then try again (and maybe in a different
order).

37 / 57

http://en.cppreference.com/w/cpp/thread/lock
http://en.cppreference.com/w/cpp/thread/try_lock
http://tbfe.de/
http://microconsult.de/

(i)

One-Time Execution
For a particular scenario that would otherwise require the use of mutex-es
to avoid a Race Condition, there is pre-built solution in C++11.

Executing a piece of code exactly once can be achieved in a cookbook-
style as follows:

// in a scope reachable from all usage points:
std::once_flag this_code_once;
…
std::call_once(this_code_once, …some callable…); // somewhere
…
std::call_once(this_code_once, …); // maybe somewhere else

For any of the callables associated with the same instance of an
std::once_flag via std::call_once, without further protection via
mutexes it is guaranteed that at most one is executed at most once.

For more information on guaranteed one time execution see:
http://en.cppreference.com/w/cpp/thread/once_flag and
http://en.cppreference.com/w/cpp/thread/call_once

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 38 / 57

http://en.wikipedia.org/wiki/Race_condition
http://en.cppreference.com/w/cpp/thread/once_flag
http://en.cppreference.com/w/cpp/thread/call_once
http://tbfe.de/
http://microconsult.de/

[!]

One-Time Execution Example
A typical use case for guaranteed one-time execution is some
initialisation, that may be expensive and is therefore delayed until a
function that depends on it is called the first time.

The following fragment avoids parallel initialisations of table:

… foo(…) {
 static std::once_flag init;
 static std::array<int, 1000> table;
 std::call_once(init, [&table]) {
 … // precalculate table when foo runs for the first time
 });
 … //
}

Note that the above code still has a problem with respect to
the initialisation it seems to guarantee …*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: The example code shown does not guarantee that from several concurrently executing threads all will
see a fully initialised table – it only guarantees sure that the callable to precalculate the content will be
executed exactly once and from exactly one thread.

39 / 57

http://tbfe.de/
http://microconsult.de/

Local static Initialisation
Since C++11 supports multi-threading in the core language, initialising
local static variables is protected to be executed at most once:

… foo(…) {
 static const int z = expensive_calculation();
 … //
}

As since C++11 compilers are required to wrap the necessary protection
around the initialisation of static locals, also this is guaranteed to work:*

class Singleton {
 … //
public:
 static Singleton &getInstance() {
 static Singleton instance;
 return instance;
 }
};

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Non-believers should consider to copy the above code, paste it to https://gcc.godbolt.org/ (or similar)
after adding a member with a runtime-dependant initialisation, and view the assembler output …

40 / 57

http://tbfe.de/
http://microconsult.de/
https://gcc.godbolt.org/

(i)

Notifications with Condition Variables
A well-known abstraction in concurrent programming are combining
mutexes with a signalling mechanism.

One main use of condition variables is to avoid busy waiting in
producer-consumer designs,

where consumer and producer run concurrently,

exchanging data over some buffer data structure.

For more information on condition variables see:
http://en.cppreference.com/w/cpp/thread/condition_variable

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 41 / 57

http://en.cppreference.com/w/cpp/thread/condition_variable
http://tbfe.de/
http://microconsult.de/

Condition Variable Example (1)
The following RingBuffer class can put condition variables to good use …

template<typename T, std::size_t N>
class RingBuffer {
 std::array<T, N+1> buf;
 std::size_t p = 0, g = 0;
 bool empty() const { return p == g; }
 bool full() const { return (p+1) % buf.size() == g; }
public:
 void put(const T &val) {
 if (full())
 … // handle case no space is available
 buf[p++] = val; p %= buf.size();
 }
 void get(T &val) {
 if (empty())
 … // handle case no data is available
 val = buf[g++]; g %= buf.size();
 }
};

… exactly at the currently omitted points.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 42 / 57

http://tbfe.de/
http://microconsult.de/

Condition Variable Example (2)
Obviously there are two conditions, that need special attention:

The buffer may be full when put is called, or
it may be empty, when get is called.

Therefore two condition variables* are added, furthermore a mutex to
protect accessing the buffer:

class RingBuffer {
 … //
 … // as before
 … //
 std::condition_variable data_available;
 std::condition_variable space_available;
 std::mutex buffer_access;
public:
 … // see next page
};

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: As the buffer space cannot be full and empty at the same time, technically one condition variable would
suffice, but for this introductory example using two different instances seems to be clearer.

43 / 57

http://tbfe.de/
http://microconsult.de/

Condition Variable Example (3)
There are two operations (of interest here), applicable to condition
variables, sending and waiting for notifications:*

class RingBuffer
 … // see previous page
public:
 void put(const T &val) {
 std::unique_lock<std::mutex> lock(buffer_access);
 space_available.wait(lock, [this]{ return !full(); });
 buf[p++] = val; p %= buf.size();
 data_available.notify_one();
 }
 void get(T &val) {
 std::unique_lock<std::mutex> lock(buffer_access);
 data_available.wait(lock, [this]{ return !empty(); });
 val = buf[g++]; g %= buf.size();
 space_available.notify_one();
 }
};

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Essential here is also the connection between the condition variables, the mutex protecting the
RingBuffer invariants, and the conditions checked as part of waiting, which are detailed on the next
page.

44 / 57

http://tbfe.de/
http://microconsult.de/

// as part of put:
 while (full()) { // !!full()
 buffer_access.unlock();
 // wait for notification
 buffer_access.lock();
 }

// as part of get:
 while (empty()) { // !!empty
 buffer_access.unlock();
 // wait for notification
 buffer_access.lock();
 }

Waiting Anatomy
Waiting on a condition variable – as shown on the last page – with

// as part of put:
 std::unique_lock<std::mutex> lock(buffer_access);
 space_available.wait(lock, [this]{ return !full(); });

// as part of get:
 std::unique_lock<std::mutex> lock(buffer_access);
 data_available.wait(lock, [this]{ return !empty(); });

is equivalent to the following, with the mutex being locked before:

At this point the mutex is locked (again) and the condition is true.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 45 / 57

http://tbfe.de/
http://microconsult.de/

Spurious Wakeups
In the example code before, the loop (in the equivalent of wait-ing) may
seem unnecessary, as the respective notification will be sent only after
some action has made the condition true.

Nevertheless it makes sense and may even be necessary:

First of all, an implementation is allowed to give Spurious
Wake-Ups, so the loop is necessary anyway.

If notifications are sent while nobody waits on the condition variable,
it is simply discarded, therefore

a producer-consumer scenario is more robust if it tends to send
"too many" notifications (of which some are discarded) …
… while sending "too few" could cause some thread to wait
forever.

Specifying the condition check in combination with wait-ing does it
right and hence should be preferred over writing a loop explicitly.*

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Thus avoiding some later maintainer considers the while "unnecessary" and replace it with if …

46 / 57

http://en.wikipedia.org/wiki/Spurious_wakeup
http://tbfe.de/
http://microconsult.de/

(i)

Atomic Operation Support
With the support for atomic operations C++11 multi-threading allows to
implement

Wait-Free Algorithms,

Lock-Free Algorithms, and

Obstruction-Free Algorithms.

The basic concept is to provide a way to know whether a certain
modification of some memory location was caused by the current thread
or by another one.

For more information about atomic operation support see:
http://en.cppreference.com/w/cpp/atomic

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 47 / 57

http://en.wikipedia.org/wiki/Non-blocking_algorithm#Wait-freedom
http://en.wikipedia.org/wiki/Non-blocking_algorithm#Lock-freedom
http://en.wikipedia.org/wiki/Non-blocking_algorithm#Obstruction-freedom
http://en.cppreference.com/w/cpp/atomic
http://tbfe.de/
http://microconsult.de/

Atomic Operations Example
The following example, demonstrating the lock-free approach with
operations (instead of using mutexes) modifies a former example:

template<typename T1, typename T2, typename Transformation>
void worker(T1 args[], std::size_t data_size, T2 result,
 std::atomic_size_t &total_progress,
 Transformation func) {
 while (total_progress < data_size) {
 constexpr auto chunks = std::size_t{100};
 std::size_t beg = total_progress.load();
 std::size_t end;
 do {
 end = ((data_size - beg) > chunks)
 ? beg + chunks
 : data_size;
 } while (!total_progress.compare_exchange_weak(beg, end));
 std::transform(&data[beg], &data[end], &sqrts[beg], func);
 }
}

Be sure to understand that the loop controlled by the return value of
compare_exchange_weak guarantees the prior calculations are (still) valid.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 48 / 57

http://tbfe.de/
http://microconsult.de/

(i)

Memory Order (and Dependencies)
Memory order "specifies how regular, non-atomic memory accesses are to
be ordered around an atomic operation".*

There are a number of different models to select from,

with the default providing "sequentially consistent ordering",

being closest to what most developers would expect,

but (possibly) not with the optimal performance for a given use case.

For more information on memory order see:
http://en.cppreference.com/w/cpp/atomic/memory_order

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Cited from the reference further down on this page.

49 / 57

http://en.cppreference.com/w/cpp/atomic/memory_order
http://tbfe.de/
http://microconsult.de/

[!]

Atomic Operations Recommendation

Except for the potential of deadlocks the challenges are similar to
algorithms using locks:*

Problems may only show for a critical timing and may be
reproducible in particular test environments only.

In general, a failed test may show the presence of errors, but
even many successful tests do not guarantee their absence.

Beyond trivial cases – like the one shown in the example –,
implementing multi-threaded programs with atomic operations
requires substantial expertise.

Be sure to keep the design as simple as possible and have it
reviewed by other developers experienced in that particular fields,
maybe both, colleagues and hired consultants too.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: It may very well be the case that problematic situations depend on hardware features like the size of
cache-lines, the depth of an instruction pipeline, or the way branch prediction works.

50 / 57

http://tbfe.de/
http://microconsult.de/

(i)

[!]

Using Class std::thread
In the examples before the class std::thread was used only indirectly (via
std::async, building on Futures and Promises.

There is also a class std::thread
taking any runnable code as constructor argument,
executing it in a separate thread.

For more information on the std::thread class see:
http://en.cppreference.com/w/cpp/thread

There are explicitly no means provided to forcefully terminate
one thread from another one.

Any non-portable way* to forcefully terminate a thread risks to
entail serious consequences later, as e.g. locks may not be
released or awaited notifications not be sent.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: Such as potentially existing interrupt or kill functions reachable via a Native Interface Handle.

51 / 57

http://en.cppreference.com/w/cpp/thread
http://tbfe.de/
http://microconsult.de/

[!]

// starting some workers
// multi-threaded ...
std::thread t1{worker_task};
std::thread t2{worker_task};
…
// ... and waiting for them
// to finish:
t1.join();
t2.join();
…

using namespace std;
constexpr auto NCORES = 4;
// starting one worker-thread
// per core ...
array<thread, NCORES> threads;
for (auto &t : threads)
 t = thread{worker_task};
// ... and wait for all to
// finish:
for (auto &t : threads)
 t.join();

Example for Using Class std::thread
In case worker returns no value and throws no exception, like in a
former example (and assuming the same set-up), using class std::thread
directly can be straight forward (left) or done in the "nifty" way (right):

An alternative to join-ing with a thread is detach-ing it.

A program will immediately terminate if an instance of class
std::thread referring to an active thread gets destructed.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 52 / 57

http://en.cppreference.com/w/cpp/thread/thread/join
http://en.cppreference.com/w/cpp/thread/thread/detach
http://tbfe.de/
http://microconsult.de/

[!]

Recommendations for Using Class std::thread

In trivial cases (no exceptions, no result to fetch) using threads via
instances of class std::thread may be considered.

Nevertheless understand the peculiarities and know how to avoid
race conditions, especially when std::thread objects go out of
scope.*

It causes the program to terminate if the callable started
throws an exception or an instance of std::thread is still in
joinable state when it goes out of scope and gets destructed.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: At 1:00:47 the following video by Scott Meyers gives a good introduction to the problem and some
recipes how it can be avoided: http://channel9.msdn.com/Events/GoingNative/2013/An-Effective-
Cpp11-14-Sampler

53 / 57

http://tbfe.de/
http://microconsult.de/
https://www.youtube.com/watch?feature=player_detailpage&v=BezbcQIuCsY#t=3646
http://channel9.msdn.com/Events/GoingNative/2013/An-Effective-Cpp11-14-Sampler

Native Handles
Last and finally, most C++11 multi-threading implementation build on a
threading model provided by their execution environment.

The requirements in the standard are rather the intersection of the
features provided by well-known threading models.

Usually and typically the standard does not mandate any any extensions
thereof, but in some cases provides a way to "reach through" to the native
thread model:

E.g. std::thread::native_handle could provide ways to manipulate
thread priorities, maybe including ways to specify protocols for
Priority Ceiling or other means to circumvent Priority Inversion.

Also the classes for condition variables and the various kinds of
mutexes have member functions native_handle.

The enumeration std::launch may provide more (named) values to
control implementation specific details in the behavior of std::async.

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 54 / 57

http://en.wikipedia.org/wiki/Priority_ceiling_protocol
http://en.wikipedia.org/wiki/Priority_inversion
http://tbfe.de/
http://microconsult.de/

[!]

Concurrency Recommendations
So far the presentation of C++11 concurrency support was only meant as
an overview.

Practically using concurrency features beyond parallelizing
independent tasks requires much more knowledge and
experience in this area, what this presentation can not provide.

A good and near to exhaustive coverage of the concurrency part of
C++11 is:

C++ Concurrency in Action
Practical Multithreading

by Anthony Williams
ISBN-13: 978-1-9334988-77-1

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 55 / 57

http://www.cplusplusconcurrencyinaction.com/
http://tbfe.de/
http://microconsult.de/

Boost: Threads Library
As C++11 threads emerged from Boost.Thread there is little difference.

Some differences between C++11 and Boost may exist (depending on the
version of the latter) and new features may appear and be tried in Boost
first before eventually getting part of an upcoming C++ standard.

There are many reasons why a pure library solution may have practical
difficulties to properly support concurrency.

Most important is in the memory model, which needs to be clearly
defined so that optimising compilers are restricted to the necessary
limits – but not (too far) beyond these.*

See also Schäling: 6

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH

*: A related, easy to recognize problem that demonstrates why concurrency cannot be added as a library
alone but must be part of the core language part, can be seen when considering a long-existing
features of C which is also part of C++: the initialization of local static variables. By definition this takes
place when the definition is reached in the program flow for the first time and hence, in the general
case must be protected with a mutex (or similar) to avoid race conditions (except for initialisation with a
compile-time constant that can be loaded at program startup).

56 / 57

http://www.boost.org/doc/libs/release/doc/html/thread.html
http://tbfe.de/
http://microconsult.de/

Boost: Asio
The purpose of Boost.Asio is to support event-driven program designs by
providing a framework to dispatch incoming events to previously
registered event handlers:

The largest group of events deals with I/O, especially the arrival of
data from asynchronous sources (like sockets).

Besides that it allows also an applications to send events to itself,
maybe with a specified delay.

Event handlers are run single-threaded and hence there is no need for
synchronisation as is in multi-threaded designs. For good responsiveness
an event driven program design must keep event handlers small.

Especially an event handler should never delay or wait for responses of
an external client – rather register an handler to be started when the
response arrives.

See also Schäling: 7

(CC) BY-SA: Dipl.-Ing. Martin Weitzel im Auftrag von MicroConsult Training & Consulting GmbH 57 / 57

http://www.boost.org/doc/libs/release/doc/html/boost_asio.html
http://tbfe.de/
http://microconsult.de/

