
Curiously recurring template pattern
The curiously recurring template pattern (CRTP) is an idiom in C++ in which a class X derives from a class

template instantiation using X itself as template argument.[1] More generally it is known as F-bound

polymorphism, and it is a form of F-bounded quantification.

History

General form

Static polymorphism

Object counter

Polymorphic chaining

Polymorphic copy construction

Pitfalls

See also

References

The technique was formalized in 1989 as "F-bounded quantification."[2] The name "CRTP" was independently coined

by Jim Coplien in 1995,[3] who had observed it in some of the earliest C++ template code as well as in code examples

that Timothy Budd created in his multiparadigm language Leda.[4] It is sometimes called "Upside-Down Inheritance"
[5][6] due to the way it allows class hierarchies to be extended by substituting different base classes.

The Microsoft Implementation of CRTP in ATL was independently discovered, also in 1995 by Jan Falkin who

accidentally derived a base class from a derived class. Christian Beaumont, first saw Jan's code and initially thought it

couldn't possibly compile in the Microsoft compiler available at the time. Following this revelation that it did indeed

work, Christian based the entire ATL and WTL design on this mistake.

// The Curiously Recurring Template Pattern (CRTP)
template<class T>
class Base
{

// methods within Base can use template to access members of Derived
};
class Derived : public Base<Derived>
{

// ...
};

Some use cases for this pattern are static polymorphism and other metaprogramming techniques such as those

Contents

History

General form

Curiously recurring template pattern - Wikipedia https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

1 von 6 12.09.2018, 11:46

described by Andrei Alexandrescu in Modern C++ Design.[7] It also figures prominently in the C++ implementation of

the Data, Context, and Interaction paradigm.[8]

Typically, the base class template will take advantage of the fact that member function bodies (definitions) are not

instantiated until long after their declarations, and will use members of the derived class within its own member

functions, via the use of a cast; e.g.:

template <class T>
struct Base
{

void interface()
{

// ...
static_cast<T*>(this)->implementation();
// ...

}

static void static_func()
{

// ...
T::static_sub_func();
// ...

}
};

struct Derived : Base<Derived>
{

void implementation();
static void static_sub_func();

};

In the above example, note in particular that the function Base<Derived>::interface(), though declared before the

existence of the struct Derived is known by the compiler (i.e., before Derived is declared), is not actually instantiated

by the compiler until it is actually called by some later code which occurs after the declaration of Derived (not shown

in the above example), so that at the time the function "implementation" is instantiated, the declaration of

Derived::implementation() is known.

This technique achieves a similar effect to the use of virtual functions, without the costs (and some flexibility) of

dynamic polymorphism. This particular use of the CRTP has been called "simulated dynamic binding" by some.[9] This

pattern is used extensively in the Windows ATL and WTL libraries.

To elaborate on the above example, consider a base class with no virtual functions. Whenever the base class calls

another member function, it will always call its own base class functions. When we derive a class from this base class,

we inherit all the member variables and member functions that weren't overridden (no constructors or destructors). If

the derived class calls an inherited function which then calls another member function, that function will never call any

derived or overridden member functions in the derived class.

However, if base class member functions use CRTP for all member function calls, the overridden functions in the

derived class will be selected at compile time. This effectively emulates the virtual function call system at compile time

without the costs in size or function call overhead (VTBL structures, and method lookups, multiple-inheritance VTBL

machinery) at the disadvantage of not being able to make this choice at runtime.

Static polymorphism

Object counter

Curiously recurring template pattern - Wikipedia https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

2 von 6 12.09.2018, 11:46

The main purpose of an object counter is retrieving statistics of object creation and destruction for a given class.[10]

This can be easily solved using CRTP:

template <typename T>
struct counter
{

static int objects_created;
static int objects_alive;

counter()
{

++objects_created;
++objects_alive;

}

counter(const counter&)
{

++objects_created;
++objects_alive;

}
protected:

~counter() // objects should never be removed through pointers of this type
{

--objects_alive;
}

};
template <typename T> int counter<T>::objects_created(0);
template <typename T> int counter<T>::objects_alive(0);

class X : counter<X>
{

// ...
};

class Y : counter<Y>
{

// ...
};

Each time an object of class X is created, the constructor of counter<X> is called, incrementing both the created and

alive count. Each time an object of class X is destroyed, the alive count is decremented. It is important to note that

counter<X> and counter<Y> are two separate classes and this is why they will keep separate counts of X's and Y's.

In this example of CRTP, this distinction of classes is the only use of the template parameter (T in counter<T>) and

the reason why we cannot use a simple un-templated base class.

Method chaining, also known as named parameter idiom, is a common syntax for invoking multiple method calls in

object-oriented programming languages. Each method returns an object, allowing the calls to be chained together in a

single statement without requiring variables to store the intermediate results.

When the named parameter object pattern is applied to an object hierarchy, things can get wrong. Suppose we have

such a base class:

class Printer
{
public:

Printer(ostream& pstream) : m_stream(pstream) {}

template <typename T>
Printer& print(T&& t) { m_stream << t; return *this; }

template <typename T>
Printer& println(T&& t) { m_stream << t << endl; return *this; }

Polymorphic chaining

Curiously recurring template pattern - Wikipedia https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

3 von 6 12.09.2018, 11:46

private:
ostream& m_stream;

};

Prints can be easily chained:

Printer{myStream}.println("hello").println(500);

However, if we define the following derived class:

class CoutPrinter : public Printer
{
public:

CoutPrinter() : Printer(cout) {}

CoutPrinter& SetConsoleColor(Color c) { ... return *this; }
};

we "lose" the concrete class as soon as we invoke a function of the base:

v-- we have a 'Printer' here, not a 'CoutPrinter'
CoutPrinter().print("Hello ").SetConsoleColor(Color.red).println("Printer!"); // compile error

This happens because 'print' is a function of the base - 'Printer' - and then it returns a 'Printer' instance.

The CRTP can be used to avoid such problem and to implement "Polymorphic chaining":[11]

// Base class
template <typename ConcretePrinter>
class Printer
{
public:

Printer(ostream& pstream) : m_stream(pstream) {}

template <typename T>
ConcretePrinter& print(T&& t)
{

m_stream << t;
return static_cast<ConcretePrinter&>(*this);

}

template <typename T>
ConcretePrinter& println(T&& t)
{

m_stream << t << endl;
return static_cast<ConcretePrinter&>(*this);

}
private:

ostream& m_stream;
};

// Derived class
class CoutPrinter : public Printer<CoutPrinter>
{
public:

CoutPrinter() : Printer(cout) {}

CoutPrinter& SetConsoleColor(Color c) { ... return *this; }
};

// usage
CoutPrinter().print("Hello ").SetConsoleColor(Color.red).println("Printer!");

Polymorphic copy construction

Curiously recurring template pattern - Wikipedia https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

4 von 6 12.09.2018, 11:46

When using polymorphism, one sometimes needs to create copies of objects by the base class pointer. A commonly

used idiom for this is adding a virtual clone function that is defined in every derived class. The CRTP can be used to

avoid having to duplicate that function or other similar functions in every derived class.

// Base class has a pure virtual function for cloning
class Shape {
public:

virtual ~Shape() {};
virtual Shape *clone() const = 0;

};
// This CRTP class implements clone() for Derived
template <typename Derived>
class Shape_CRTP : public Shape {
public:

virtual Shape *clone() const {
return new Derived(static_cast<Derived const&>(*this));

}
};

// Nice macro which ensures correct CRTP usage
#define Derive_Shape_CRTP(Type) class Type: public Shape_CRTP<Type>

// Every derived class inherits from Shape_CRTP instead of Shape
Derive_Shape_CRTP(Square) {};
Derive_Shape_CRTP(Circle) {};

This allows obtaining copies of squares, circles or any other shapes by shapePtr->clone().

One issue with static polymorphism is that without using a general base class like "Shape" from the above example,

derived classes cannot be stored homogeneously as each CRTP base class is a unique type. For this reason, it is more

common to inherit from a shared base class with a virtual destructor, like the example above.

Barton–Nackman trick

F-bounded quantification

Abrahams, David; Gurtovoy, Aleksey. C++ Template Metaprogramming: Concepts, Tools, and Techniques from

Boost and Beyond. Addison-Wesley. ISBN 0-321-22725-5.

1.

William Cook; et al. (1989). "F-Bounded Polymorphism for Object-Oriented Programming" (http://staff.ustc.edu.cn

/~xyfeng/teaching/FOPL/lectureNotes/CookFBound89.pdf) (PDF).

2.

Coplien, James O. (February 1995). "Curiously Recurring Template Patterns" (http://sites.google.com

/a/gertrudandcope.com/info/Publications/InheritedTemplate.pdf) (PDF). C++ Report: 24–27.

3.

Budd, Timothy (1994). Multiparadigm programming in Leda. Addison-Wesley. ISBN 0-201-82080-3.4.

"Apostate Café: ATL and Upside-Down Inheritance" (https://web.archive.org/web/20060315072824/http:

//www.apostate.com/programming/atlupsidedown.html). 15 March 2006. Archived from the original on 15 March

2006. Retrieved 2016-10-09.

5.

"ATL and Upside-Down Inheritance" (https://web.archive.org/web/20030604104137/http://archive.devx.com

/free/mgznarch/vcdj/1999/julmag99/atlinherit1.asp). 4 June 2003. Archived from the original on 4 June 2003.

Retrieved 2016-10-09.

6.

Pitfalls

See also

References

Curiously recurring template pattern - Wikipedia https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

5 von 6 12.09.2018, 11:46

Alexandrescu, Andrei (2001). Modern C++ Design: Generic Programming and Design Patterns Applied. Addison-

Wesley. ISBN 0-201-70431-5.

7.

Coplien, James; Bjørnvig, Gertrud (2010). Lean Architecture: for agile software development. Wiley.

ISBN 0-470-68420-8.

8.

"Simulated Dynamic Binding" (https://web.archive.org/web/20120209045146/http://www.pnotepad.org/devlog

/archives/000083.html). 7 May 2003. Archived from the original (http://www.pnotepad.org/devlog/archives

/000083.html) on 9 February 2012. Retrieved 13 January 2012.

9.

Meyers, Scott (April 1998). "Counting Objects in C++" (http://www.drdobbs.com/cpp/counting-objects-in-

c/184403484). C/C++ Users Journal.

10.

Arena, Marco. "Use CRTP for polymorphic chaining" (https://marcoarena.wordpress.com/2012/04/29/use-crtp-for-

polymorphic-chaining/). Retrieved 15 March 2017.

11.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Curiously_recurring_template_pattern&oldid=853821927"

This page was last edited on 7 August 2018, at 04:45 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

VTZilla
0%

X

Curiously recurring template pattern - Wikipedia https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

6 von 6 12.09.2018, 11:46

