Curiously recurring template pattern - Wikipedia https://en.wikipedia.org/wiki/Curiously recurring template pattern

WIKIPEDIA

Curiously recurring template pattern

The curiously recurring template pattern (CRTP) is an idiom in C++ in which a class x derives from a class

template instantiation using x itself as template argument.'! More generally it is known as F-bound

polymorphism, and it is a form of F-bounded quantification.

Contents

History

General form

Static polymorphism

Object counter

Polymorphic chaining
Polymorphic copy construction
Pitfalls

See also

References

History

The technique was formalized in 1989 as "F-bounded quantification."[?] The name "CRTP" was independently coined
by Jim Coplien in 1995,13! who had observed it in some of the earliest C++ template code as well as in code examples
that Timothy Budd created in his multiparadigm language Leda.l*] It is sometimes called "Upside-Down Inheritance"

[516] due to the way it allows class hierarchies to be extended by substituting different base classes.

The Microsoft Implementation of CRTP in ATL was independently discovered, also in 1995 by Jan Falkin who
accidentally derived a base class from a derived class. Christian Beaumont, first saw Jan's code and initially thought it
couldn't possibly compile in the Microsoft compiler available at the time. Following this revelation that it did indeed
work, Christian based the entire ATL and WTL design on this mistake.

General form

:// The Curiot y
:template<class T>

:class Base

i

: // methods within Base can use template to access members of Derived
1}

:class Derived : public Base<Derived>

1{

! /S

Curiously Recurring Template Pattern (CRTP)

Some use cases for this pattern are static polymorphism and other metaprogramming techniques such as those

1 von 6 12.09.2018, 11:46

Curiously recurring template pattern - Wikipedia https://en.wikipedia.org/wiki/Curiously recurring template pattern

described by Andrei Alexandrescu in Modern C++ Design.[] It also figures prominently in the C++ implementation of

the Data, Context, and Interaction paradigm.[®!

Static polymorphism

Typically, the base class template will take advantage of the fact that member function bodies (definitions) are not
instantiated until long after their declarations, and will use members of the derived class within its own member

functions, via the use of a cast; e.g.:

1

ltemplate <class T>

:struct Base

Yy

! void interface ()

{
VAR
static_cast<T*>(this)->implementation () ;
VAR

}

static void static_ func()

{

VA
T::static_sub func();
V2
}
}i
1
istruct : Base<Derived>

1

{

1

1 void implementation();

static void static_sub_ func();

In the above example, note in particular that the function Base<Derived>::interface(), though declared before the
existence of the struct Derived is known by the compiler (i.e., before Derived is declared), is not actually instantiated
by the compiler until it is actually called by some later code which occurs after the declaration of Derived (not shown
in the above example), so that at the time the function "implementation" is instantiated, the declaration of

Derived::implementation() is known.

This technique achieves a similar effect to the use of virtual functions, without the costs (and some flexibility) of
dynamic polymorphism. This particular use of the CRTP has been called "simulated dynamic binding" by some.[®! This
pattern is used extensively in the Windows ATL and WTL libraries.

To elaborate on the above example, consider a base class with no virtual functions. Whenever the base class calls
another member function, it will always call its own base class functions. When we derive a class from this base class,
we inherit all the member variables and member functions that weren't overridden (no constructors or destructors). If
the derived class calls an inherited function which then calls another member function, that function will never call any

derived or overridden member functions in the derived class.

However, if base class member functions use CRTP for all member function calls, the overridden functions in the
derived class will be selected at compile time. This effectively emulates the virtual function call system at compile time
without the costs in size or function call overhead (VITBL structures, and method lookups, multiple-inheritance VIBL

machinery) at the disadvantage of not being able to make this choice at runtime.

Object counter

2 von 6 12.09.2018, 11:46

Curiously recurring template pattern - Wikipedia

3 von 6

The main purpose of an object counter is retrieving statistics of object creation and destruction for a given class.[']
This can be easily solved using CRTP:

1

'template <typename T>

:struct counter

1

! static int objects created;
static int objects alive;

counter ()

{
++objects created;
++objects alive;

}

counter (const counteré&)
{
++objects created;
++objects alive;
}
rotected:
~counter () // objects should never be removed through pointers of this type

{

e e LT

--objects_alive;
i }
1}
:template <typename T> int counter<T>::objects created(0);
itemplate <typename T> int counter<T>::objects_alive(0);
1

1
iclass X : counter<X>

iclass Y : counter<y>
1{
1

Each time an object of class X is created, the constructor of counter<x> is called, incrementing both the created and
alive count. Each time an object of class X is destroyed, the alive count is decremented. It is important to note that
counter<x> and counter<Y> are two separate classes and this is why they will keep separate counts of x's and ¥'s.
In this example of CRTP, this distinction of classes is the only use of the template parameter (T in counter<T>) and

the reason why we cannot use a simple un-templated base class.

Polymorphic chaining

Method chaining, also known as named parameter idiom, is a common syntax for invoking multiple method calls in
object-oriented programming languages. Each method returns an object, allowing the calls to be chained together in a

single statement without requiring variables to store the intermediate results.

When the named parameter object pattern is applied to an object hierarchy, things can get wrong. Suppose we have

such a base class:

1

Iclass Printer

1

R

lpublic:

Printer (ostream& pstream) : m stream(pstream) {}

template <typename T>
Printer& print (T&& t) { m stream << t; return *this; }

template <typename T>
Printer& println(T&& t) { m stream << t << endl; return *this; }

12.09.2018, 11:46

https://en.wikipedia.org/wiki/Curiously recurring template pattern

Curiously recurring template pattern - Wikipedia

4 von 6

private:
! ostream& m_stream;

1

iIclass CoutPrinter : public Printer
"

ipublic:

: CoutPrinter () : Printer (cout) {}

1

: CoutPrinter& SetConsoleColor (Color c) { ... return *this; }
1

1

: v—-— we have a 'Printer' here, not a 'CoutPrinter'
iICoutPrinter () .print ("Hello ") .SetConsoleColor (Color.red) .println("Printer!");

This happens because 'print' is a function of the base - 'Printer’ - and then it returns a 'Printer' instance.

The CRTP can be used to avoid such problem and to implement "Polymorphic chaining":[1"]

1// Base class

:template <typename ConcretePrinter>

Iclass Printer

i

ipublic:

Printer (ostream& pstream) : m stream(pstream) {}

template <typename T>

ConcretePrinter& print (T&& t)

{

m_stream << t;

return static_cast<ConcretePrinteré&> (*this);

1

1

1

1

1

1

1

1

1

1

1

! }
1

1

1 template <typename T>

' ConcretePrinter& println(T&& t)

! {

H m stream << t << endl;

1 return static_ cast<ConcretePrinter&> (*this);
1
1

}
private:
i ostream& m_stream;
1}

1

1

1// Derived class

:class CoutPrinter : public Printer<CoutPrinter>
i

public:

1 CoutPrinter () : Printer (cout) ({}

1

1

1 CoutPrinter& SetConsoleColor (Color c) { ... return *this; }
.

B

1

1 LeAage

// usage

1 CoutPrinter () .print ("Hello ") .SetConsoleColor (Color.red) .println("Printer!");

Polymorphic copy construction

https://en.wikipedia.org/wiki/Curiously recurring template pattern

12.09.2018, 11:46

Curiously recurring template pattern - Wikipedia https://en.wikipedia.org/wiki/Curiously recurring template pattern

When using polymorphism, one sometimes needs to create copies of objects by the base class pointer. A commonly
used idiom for this is adding a virtual clone function that is defined in every derived class. The CRTP can be used to

avoid having to duplicate that function or other similar functions in every derived class.

T TS EE ST ST TS hl
1

1// Base class has a pure virtual function for cloning

:class Shape {

ipublic:

' virtual ~Shape() {};

1 virtual Shape *clone() const = 0;

i

1// This CRTP class implements clone() for Derived

template <typename Derived>

iclass Shape CRTP : public Shape ({

public:

1 virtual Shape *clone() const {

return new Derived(static_cast<Derived const&>(*this));

1

\// Every derived class inherits fro.
:Derive_Shape_CRTP(Square)
iDerive Shape CRTP (Circle)

This allows obtaining copies of squares, circles or any other shapes by shapePtr->clone ().

Pitfalls

One issue with static polymorphism is that without using a general base class like "Shape" from the above example,

derived classes cannot be stored homogeneously as each CRTP base class is a unique type. For this reason, it is more
common to inherit from a shared base class with a virtual destructor, like the example above.

See also

= Barton—Nackman trick
= F-bounded quantification

References

1. Abrahams, David; Gurtovoy, Aleksey. C++ Template Metaprogramming: Concepts, Tools, and Techniques from
Boost and Beyond. Addison-Wesley. ISBN 0-321-22725-5.

2. William Cook; et al. (1989). "F-Bounded Polymorphism for Object-Oriented Programming" (http://staff.ustc.edu.cn
[~xyfeng/teaching/FOPL/lectureNotes/CookFBound89.pdf) (PDF).

3. Coplien, James O. (February 1995). "Curiously Recurring Template Patterns" (http://sites.google.com
/algertrudandcope.com/info/Publications/InheritedTemplate.pdf) (PDF). C++ Report: 24-27.
4. Budd, Timothy (1994). Multiparadigm programming in Leda. Addison-Wesley. ISBN 0-201-82080-3.

5. "Apostate Café: ATL and Upside-Down Inheritance" (https://web.archive.org/web/20060315072824/http:
/lwww.apostate.com/programming/atlupsidedown.html). 15 March 2006. Archived from the original on 15 March
2006. Retrieved 2016-10-09.

6. "ATL and Upside-Down Inheritance" (https://web.archive.org/web/20030604104137/http://archive.devx.com
[free/mgznarch/vcdj/1999/julmag99/atlinherit1.asp). 4 June 2003. Archived from the original on 4 June 2003.
Retrieved 2016-10-09.

5von 6 12.09.2018, 11:46

Curiously recurring template pattern - Wikipedia https://en.wikipedia.org/wiki/Curiously recurring template pattern

6 von 6

7. Alexandrescu, Andrei (2001). Modern C++ Design: Generic Programming and Design Patterns Applied. Addison-
Wesley. ISBN 0-201-70431-5.

8. Coplien, James; Bjgrnvig, Gertrud (2010). Lean Architecture: for agile software development. Wiley.
ISBN 0-470-68420-8.

9. "Simulated Dynamic Binding" (https://web.archive.org/web/20120209045146/http://www.pnotepad.org/deviog
/archives/000083.html). 7 May 2003. Archived from the original (http://www.pnotepad.org/devlog/archives
/000083.html) on 9 February 2012. Retrieved 13 January 2012.

10. Meyers, Scott (April 1998). "Counting Objects in C++" (http://www.drdobbs.com/cpp/counting-objects-in-
c/184403484). C/C++ Users Journal.

11. Arena, Marco. "Use CRTP for polymorphic chaining" (https://marcoarena.wordpress.com/2012/04/29/use-crtp-for-
polymorphic-chaining/). Retrieved 15 March 2017.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Curiously_recurring_template_pattern&oldid=853821927"

This page was last edited on 7 August 2018, at 04:45 (UTC).
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using

this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

>] VTZilla
0%

X

12.09.2018, 11:46

